1. | EXECUTIVE SUMMARY |
1.1. | What is the report about and who should read it? |
1.2. | Existing large mini-/micro-LED display announcements |
1.3. | Expectation of future displays |
1.4. | Status of OLED |
1.5. | Strategies of QDs in display |
1.6. | Characteristic comparison of different display technologies |
1.7. | Horizontal comparison |
1.8. | Why Micro-LED Displays? |
1.9. | Micro-LED value propositions compared with LCD, OLED, QD |
1.10. | Importance of identifying core value propositions |
1.11. | Core value propositions of µLED displays |
1.12. | Analysis of micro-LED's value propositions |
1.13. | Influence of resolution for applications |
1.14. | Micro-LED display types |
1.15. | Potential applications for micro-LED displays |
1.16. | Matrix analysis |
1.17. | Display requirements for XR applications |
1.18. | Application analysis: Augmented/mixed reality |
1.19. | Application analysis: Virtual reality |
1.20. | Application analysis: Large video displays |
1.21. | Application analysis: Televisions and monitors |
1.22. | Application analysis: Automotive displays |
1.23. | Application analysis: Mobile phones |
1.24. | Application analysis: Smart watches and wearables |
1.25. | Application analysis: Tablets and laptop |
1.26. | Emerging displays enabled by micro-LED technology |
1.27. | Micro-LED display development stage |
1.28. | Micro-LED application roadmap |
1.29. | Micro-LED display fabrication flowchart |
1.30. | Technologies of micro-LED displays |
1.31. | Complex micro-LED display design |
1.32. | Challenge transition for micro-display manufacturing |
1.33. | Current achievements of micro-LED displays |
1.34. | Summary of challenges for micro-LED displays |
1.35. | Issues with RGB micro-LED chips |
1.36. | Micro-LED performance summary |
1.37. | Full colour realization |
1.38. | Quantum dots for µLEDs |
1.39. | Regional development: Taiwan |
1.40. | Regional development: Mainland China |
1.41. | Regional development: Japan & Korea |
1.42. | Regional development: Europe |
1.43. | Regional development: US |
1.44. | Supply chain status |
1.45. | Supply chain reshuffle |
1.46. | Possible supply chain for micro-LED displays |
1.47. | Scenarios of supply chain dominance |
1.48. | Supply chain influenced by trade war and coronavirus |
2. | INTRODUCTION TO MICRO-LED DISPLAY |
2.1. | From traditional LEDs... |
2.2. | ...to Micro-LEDs |
2.3. | Comparisons of LEDs for displays |
2.4. | Mini-LEDs and Micro-LEDs |
2.5. | Correlations between mini-LED, micro-LED and fine pitch LED displays |
2.6. | From traditional LEDs to micro-LED |
2.7. | Display types based on micro-LEDs |
2.8. | Advantages of AM micro-LED micro-displays |
2.9. | LED size definitions |
2.10. | Micro-LED displays: size is an important feature |
2.11. | Micro LED displays: beyond the size |
2.12. | A better definition? |
2.13. | Micro-LED display panel structure |
3. | EPITAXY AND CHIP MANUFACTURING |
3.1. | Introduction to light-emitting diodes |
3.1.1. | History of solid-state lighting |
3.1.2. | What is an LED? |
3.1.3. | How does an LED work? |
3.1.4. | Homojunction vs. heterojunction |
3.1.5. | LEDs by package technique |
3.1.6. | Typical LED and packaged LED sizes |
3.1.7. | Comparison between SMD and COB |
3.1.8. | COB for displays |
3.1.9. | List of global major LED companies with introduction |
3.2. | Epitaxy |
3.2.1. | Bandgap vs. lattice constant for III-V semiconductors |
3.2.2. | Materials for commercial LED chips |
3.2.3. | Green gap |
3.2.4. | Epitaxy substrate |
3.2.5. | Wafer patterning |
3.2.6. | Epitaxy methods |
3.2.7. | Metal organic chemical vapor deposition |
3.2.8. | Pros and cons of MOCVD |
3.2.9. | Epitaxial growth requirement |
3.2.10. | Offering from Aixtron and Veeco |
3.2.11. | Veeco's offering |
3.2.12. | Engineered substrate |
3.2.13. | Wafer uniformity 1 |
3.2.14. | Wavelength uniformity 2 |
3.2.15. | Solutions for wafer nonuniformity |
3.3. | Chip manufacturing |
3.3.1. | LED fabrication flowchart |
3.3.2. | Typical RGB LED designs |
3.3.3. | LED chip structures |
3.3.4. | LED chip structure illustrations |
3.3.5. | Future of the LED chip structure |
3.3.6. | Epi-film transfer |
3.3.7. | Fabrication of vertical GaN-LEDs |
3.4. | Micro-LED Performances |
3.4.1. | Influence of micro-LED performance |
3.4.2. | EQE of micro-LED versus current density |
3.4.3. | Efficiency droop |
3.4.4. | Temperature stability |
3.4.5. | Bowing of wavelength shift |
3.4.6. | Size dependence of micro-LEDs |
3.4.7. | Efficiencies and requirement of RGB micro-LEDs |
3.4.8. | Surface recombination |
3.4.9. | Sidewall effect |
3.4.10. | Side wall passivation |
3.4.11. | Efficiency improvement |
4. | TRANSFER AND ASSEMBLY |
4.1.1. | Introduction |
4.1.2. | Mass transfer and assembly technologies |
4.1.3. | Requirements of mass transfer |
4.1.4. | Chiplet mass transfer types |
4.2. | Chiplet Mass Transfer |
4.2.1. | Introduction to chiplet mass assembly |
4.2.2. | Chiplet mass transfer scenario |
4.2.3. | Comparison of mass transfer technologies |
4.2.4. | Comparison of transfer technologies of different companies |
4.2.5. | Transfer yield |
4.2.6. | Fine pick and place |
4.2.7. | Overview of Elastomeric stamp |
4.2.8. | Transfer process flow |
4.2.9. | Elastomeric stamp: pros and cons |
4.2.10. | Stamp yield vs. defect density |
4.2.11. | Key technologies for micro-LED mass transfer |
4.2.12. | Substrate treatment |
4.2.13. | Kinetic control of the elastomeric stamp adhesion |
4.2.14. | Elastomeric stamp |
4.2.15. | Pitch size determination |
4.2.16. | X-Celeprint |
4.2.17. | µLED fabrication |
4.2.18. | µLEDs from sapphire substrate |
4.2.19. | Passive matrix displays made by micro-transfer printing |
4.2.20. | Passive matrix μLED display fabrication |
4.2.21. | Active matrix displays made by micro-transfer printing |
4.2.22. | Active matrix μLED display fabrication |
4.2.23. | Automated micro-transfer printing machinery |
4.2.24. | Capillary-assisted transfer printing |
4.2.25. | Mikro Mesa: Transfer technology |
4.2.26. | Mikro Mesa: Transfer flowchart |
4.2.27. | Mikro Mesa: Transfer stamp |
4.2.28. | Mikro Mesa: Transfer design target |
4.2.29. | PlayNitride: Mass transfer for micro-LED chips |
4.2.30. | PlayNitride: Mass transfer flowchart |
4.2.31. | Visionox |
4.2.32. | ITRI: Chip fabrication |
4.2.33. | ITRI's mass transfer process |
4.2.34. | ITRI's transfer module |
4.2.35. | Overview of electrostatic array |
4.2.36. | Electrostatic/electromagnetic transfer |
4.2.37. | Apple/LuxVue |
4.2.38. | VerLASE's large area assembly platform |
4.2.39. | Interposer idea |
4.2.40. | Self-assembly |
4.2.41. | Introduction of fluidic-assembly |
4.2.42. | eLux: introduction |
4.2.43. | Fabrication of micro-LED chip array |
4.2.44. | eLux's fluidic assembly |
4.2.45. | eLux's display prototypes |
4.2.46. | eLux's supply chain |
4.2.47. | eLux's core patent technology |
4.2.48. | Image quality comparison |
4.2.49. | SWOT analysis of eLux's technology |
4.2.50. | Other fluidic assembly techniques |
4.2.51. | Fluidic assembly (physical): overview |
4.2.52. | Alien |
4.2.53. | Alien's fluidic self-assembly technology |
4.2.54. | Self-assembly based on shape/geometry matching |
4.2.55. | Shape-based self-assembly |
4.2.56. | Fluidic assembly (electrophoretic): overview |
4.2.57. | Electrophoretic positioning of LEDs |
4.2.58. | PARC's xerographic micro-assembly Printing |
4.2.59. | Fluidic-assembly (surface energy): overview |
4.2.60. | Mechanism of surface-tension-driven fluidic assembly |
4.2.61. | Surface tension based fluidic assembly |
4.2.62. | Fluidic-assembly (magnetic): overview |
4.2.63. | Magnetically-assisted assembly |
4.2.64. | Fluidic-assembly (photoelectrochemical): overview |
4.2.65. | Photoelectrochemically driven fluidic-assembly |
4.2.66. | Fluidic-assembly (combination): overview |
4.2.67. | Chip mounting apparatus |
4.2.68. | Summary of fluidic assembly |
4.2.69. | SelfArray |
4.2.70. | Laser enabled transfer |
4.2.71. | Overview of laser enabled transfer |
4.2.72. | Laser beam requirement |
4.2.73. | Coherent UVtransfer 3in1 System |
4.2.74. | Uniqarta's parallel laser-enabled transfer technology |
4.2.75. | QMAT's beam-addressed release technology |
4.2.76. | Optovate's technology |
4.2.77. | Coherent's approach |
4.2.78. | Toray's offering |
4.2.79. | Visionox's achievement |
4.2.80. | Other chiplet mass transfer techniques |
4.2.81. | Korean Institute of Machinery and Materials (KIMM) |
4.2.82. | VueReal's cartridge printing technique |
4.2.83. | VueReal's micro printer |
4.2.84. | Innovasonic's technology |
4.2.85. | Rohinni's technology |
4.2.86. | Two-step micro-transfer technology |
4.2.87. | Micro-transfer using a stretchable film |
4.2.88. | Micro-pick-and-place |
4.2.89. | Photo-polymer mass transfer |
4.3. | Monolithic Hybrid Integration |
4.3.1. | Monolithic integration |
4.3.2. | Flip-chip hybrid integration |
4.3.3. | Wafer bonding process |
4.3.4. | Monolithic hybrid integration structure |
4.3.5. | Selective transfer by selective bonding-debonding |
4.3.6. | Pros and cons of monolithic hybrid integration |
4.3.7. | Players on monolithic hybrid integration |
4.4. | All-In-One Transfer |
4.4.1. | All-in-one CMOS driving |
4.4.2. | Pros and cons of all-in-one CMOS driving technique |
4.5. | Fully Monolithic Integration |
4.5.1. | Introduction of fully monolithic integration |
4.5.2. | JBD's integration technology |
4.5.3. | Lumiode approach |
4.5.4. | Lumiode approach, process details |
4.5.5. | Temperature performance for the crystallization |
4.5.6. | Wafer from Lumiode |
4.5.7. | Ostendo's approach |
4.5.8. | Ostendo's QPI structure |
4.6. | GaN on Silicon |
4.6.1. | GaN-on-Si for various application markets |
4.6.2. | GaN on silicon epi types |
4.6.3. | Challenges of GaN-on-Silicon epitaxy |
4.6.4. | Value propositions of GaN-on-Si |
4.6.5. | GaN on sapphire vs. on silicon |
4.6.6. | GaN-on-Si approach |
4.6.7. | Cost comparison: sapphire vs silicon |
4.6.8. | Is GaN-on-Si the ultimate option? |
4.6.9. | Players working on GaN micro-LEDs on silicon |
4.7. | Nanowires |
4.7.1. | Comparison between 2D and 3D micro-LEDs |
4.7.2. | GaN epitaxy on silicon substrate |
4.7.3. | Aledia process flow |
4.7.4. | Aledia's nanowire technology |
4.7.5. | Front size device technology |
4.7.6. | Nanowires growth on silicon substrate |
4.7.7. | Size influence on nanowire's efficiency |
4.7.8. | Native EL RGB nanowires |
4.7.9. | 3D technology for small-display applications |
4.7.10. | Micro-display enabled by nanowires and 3D integration |
4.7.11. | Future of nanowire approach |
4.8. | Bonding and interconnection |
4.8.1. | Classification |
4.8.2. | Summary |
4.8.3. | Wire bonding and flip chip bonding |
4.8.4. | ACF bonding |
4.8.5. | Interconnection by resin reflow |
4.8.6. | Microtube interconnections |
4.8.7. | Microtube fabrication |
4.8.8. | Transfer and interconnection process by microtubes |
5. | TESTING |
5.1. | Testing techniques |
5.2. | Challenges in inspection |
5.3. | PL vs. EL testing |
5.4. | EL test by Tesoro Scientific |
5.5. | Camera-based microscopic imaging system |
5.6. | Inspection solution by Toray |
5.7. | Instrument System's solution |
5.8. | PL+AOI |
5.9. | TTPCON's solution |
5.10. | Cathodoluminescence used for testing |
5.11. | Hamamatsu Photonics' PL testing |
5.12. | Trends of testing |
6. | DEFECT MANAGEMENT |
6.1. | Introduction |
6.2. | Defect types |
6.3. | Redundancy |
6.4. | Repair |
6.5. | Laser micro trimming |
6.6. | PlayNitride's SMAR Tech |
6.7. | Defect compensation by QDs |
7. | MICRO-LED DISPLAY FULL-COLOUR REALIZATION |
7.1.1. | Strategies for full colour realization |
7.1.2. | Direct RGB or color converters? |
7.1.3. | RGB micro-LEDs vs. blue micro-LED + QD |
7.2. | Colour filters |
7.2.1. | Colour filters |
7.2.2. | Colour filter process flow: black matrix process |
7.2.3. | Colour filter process flow: RGB process |
7.3. | Optical lens synthesis |
7.3.1. | Full colour realized by optical lens synthesis |
7.3.2. | Full colour realization for projectors |
7.4. | Do phosphors work for micro-LED displays? |
7.4.1. | Introduction to phosphors |
7.4.2. | Requirements for phosphors in LEDs |
7.4.3. | Table of phosphor materials |
7.4.4. | Search for narrow FWHM red phosphors |
7.4.5. | Common and emerging red-emitting phosphors |
7.4.6. | Red phosphor options: TriGainTM from GE |
7.4.7. | Reliability of TriGain |
7.4.8. | Commercial progress of GE's narrowband red phosphor |
7.4.9. | Small sized PFS phosphor |
7.4.10. | Red phosphor options: Sr[LiAl3N4]:Eu2+ (SLA) red phosphor |
7.4.11. | Thermal stability of common RGY phosphors |
7.4.12. | Narrow band green phosphor |
7.4.13. | High performance organic phosphors |
7.4.14. | Toray's organic colour conversion film |
7.4.15. | Colour coverage of Toray's colour conversion films |
7.4.16. | Stability of Toray's colour conversion films |
7.4.17. | Response time feature of Toray's colour conversion films |
7.4.18. | Suppliers of phosphors |
7.5. | Quantum dot approach |
7.5.1. | Introduction to quantum dots |
7.5.2. | Value propositions of QDs in displays |
7.5.3. | Quantum dots used for micro-LED displays |
7.5.4. | QDs vs. phosphors: particle size |
7.5.5. | QDs vs. phosphors: response time |
7.5.6. | QDs vs. phosphors: colour tunability |
7.5.7. | QDs vs. phosphors: stability |
7.5.8. | QDs vs. phosphors: FWHM |
7.5.9. | Pros and cons of QD converters |
7.5.10. | Basic requirements of QDs for micro-LED displays |
7.5.11. | Trade-off between efficiency and leakage |
7.5.12. | Efficiency drop and red shift |
7.5.13. | Thickness of the QD layer for absorption |
7.5.14. | Display structure with QDs |
7.5.15. | Polarizers, short-pass filters, and other additional layers? |
7.5.16. | High blue absorptive QD materials |
7.5.17. | QD converters for µLED displays |
7.5.18. | Inkjet printing used for colour filters |
7.5.19. | Ink-jet printed QD colour converters |
7.5.20. | Curing methods |
7.5.21. | Inkjet printed QD |
7.5.22. | DIC's work |
7.5.23. | Photolithography process |
7.5.24. | QD photoresist fabrication |
7.5.25. | Photoresist approach |
7.5.26. | Successive patterning of red and green QD of various sizes |
7.5.27. | QD photoresist |
7.5.28. | Quantum-dots colour conversion layer |
7.5.29. | Full-colour emission of quantum-dot-based micro-LED display by aerosol jet technology |
7.5.30. | Electrohydrodynamic jet printing |
7.5.31. | Taiwan Nanocrystals: photo-patternable QDs for µLED displays |
7.6. | Quantum well approach |
7.6.1. | Quantum wells |
7.6.2. | Conclusions |
8. | LIGHT MANAGEMENT |
8.1. | Light management approach summary |
8.2. | Layers to optimize current distribution for better light extraction |
8.3. | InfiniLED's approach to increase light extraction efficiency |
8.4. | Methods to capture light output |
8.5. | Micro-catadioptric optical array for better directionality |
9. | BACKPLANES AND DRIVING |
9.1. | Backplane and driving options for Micro-LED displays |
9.2. | Introduction to metal oxide semiconductor field-effect transistors |
9.3. | Introduction to thin film transistors |
9.4. | Introduction to complementary metal oxide semiconductor |
9.5. | Introduction to backplane |
9.6. | TFT materials |
9.7. | Pixel driving for OLED |
9.8. | LCD pixel structure |
9.9. | TFT backplane |
9.10. | Passive matrix addressing |
9.11. | Passive driving structure |
9.12. | Active matrix addressing |
9.13. | Comparison between PM and AM addressing |
9.14. | Transistor-micro-LED connection design |
9.15. | Driving for micro-LEDs |
9.16. | Pulse width modulation |
9.17. | PAM vs. PWM |
9.18. | Driving voltage |
9.19. | Driving vs. EQE |
9.20. | RGB driver |
9.21. | Active matrix micro-LEDs with LTPS TFT backplane |
9.22. | Conclusion |
10. | IMAGE QUALITY IMPROVEMENT, POWER CONSUMPTION REDUCTION AND OTHER DESIGNS |
10.1. | Image Quality Improvement |
10.1.1. | TFT-based image uniformity issues |
10.1.2. | LED binning |
10.1.3. | Drive design |
10.1.4. | Optical compensation |
10.1.5. | Drive compensation |
10.2. | Power Consumption Reduction |
10.2.1. | LED and TFT |
10.2.2. | Drive mode optimization |
10.2.3. | Backplane optimization |
11. | MINI-LED DISPLAYS |
11.1. | Mini-LED display configurations |
11.2. | What kind of role is mini-LED playing? |
11.3. | MiniLEDs, real hope for 2021 onward? |
11.4. | Trends of Mini-LED displays |
12. | COST ANALYSIS |
12.1. | Cost basics |
12.2. | Micro-LED cost vs. Die size |
12.3. | Cost assumption |
12.4. | Cost analysis |
12.5. | Economics of micro-LED: cost down paths |
13. | MARKET ANALYSIS |
13.1. | Forecast approaches and assumptions |
13.2. | Market forecast of shipment unit |
13.3. | 2026 & 2031 application market share |
13.4. | Market forecast analysis |
13.5. | Wafer value forecast |
14. | PARTNERSHIPS, MERGES, ACQUISITIONS AND JOINT VENTURE |
14.1. | Display cycle |
14.2. | Benefits |
14.3. | Epistar & Leyard |
14.4. | PlayNitride & RIT Display |
14.5. | Konka & Chongqing Liangshan Industrial Investment, Konka & LianTronics |
14.6. | BOE & Rohinni |
14.7. | Lextar & X Display |
14.8. | JDI & glō, Kyocera & glō |
14.9. | Seoul Semiconductors & Viosys |
14.10. | Kulicke & Soffa and Uniqarta |
15. | PLAYERS AND CASE STUDIES |
15.1.1. | Players discussed in this report |
15.2. | Aledia |
15.2.1. | Aledia: introduction |
15.2.2. | Scalability to larger silicon substrate |
15.2.3. | Aledia's quasi-fabless business model |
15.2.4. | Integration process of Aledia's WireLED display |
15.2.5. | Wafer uniformity of nanowires |
15.2.6. | Colour conversion of WireLEDs |
15.2.7. | Interconnection options |
15.2.8. | Aledia's display modules |
15.3. | ALLOS Semiconductors |
15.3.1. | ALLOS Semiconductors: introduction |
15.3.2. | Strain management and emission uniformity |
15.3.3. | Strain management |
15.3.4. | Aoto Electronics |
15.4. | Apple |
15.4.1. | Apple |
15.4.2. | Apple's new Micro-LED chiplet architecture |
15.4.3. | AU Optronics |
15.5. | AU Optronics |
15.5.1. | AUO's LTPS TFT driven micro-LED display |
15.6. | BOE |
15.6.1. | Speeding up towards mini- and micro-LED displays |
15.6.2. | BOE mini-LED Backlight |
15.6.3. | BOE Mini LED Display |
15.7. | CEA-Leti |
15.7.1. | CEA-Leti: introduction |
15.7.2. | Demos by hybridization technology |
15.7.3. | Display performance |
15.7.4. | Process of fabricating hybridization micro-displays |
15.7.5. | Process of fabricating monolithic micro-displays |
15.7.6. | Novel approach for monolithic display fabrication |
15.8. | Chengdu Vistar Optoelectronics |
15.8.1. | Chengdu Vistar Optoelectronics |
15.9. | EpiPix |
15.9.1. | Introduction of EpiPix |
15.9.2. | EpiPix's technique |
15.10. | glō |
15.10.1. | Introduction of glō |
15.10.2. | Glō's technology |
15.10.3. | Glō's prototypes |
15.11. | ITRI |
15.11.1. | ITRI development of micro-LEDs |
15.11.2. | ITRI's progress |
15.11.3. | ITRI's offering |
15.11.4. | Micro-LED device characteristics |
15.11.5. | Reliability test |
15.11.6. | ITRI's MicroLED displays |
15.11.7. | ITRI's transparent MicroLED displays |
15.11.8. | ITRI |
15.12. | Jade Bird Display |
15.12.1. | Jade Bird Display: introduction |
15.12.2. | Existing hybrid integration technology by flip chip technique |
15.12.3. | Device fabrication |
15.12.4. | Device structure and architecture |
15.12.5. | micro-LEDs for the JBD's micro-displays |
15.12.6. | JBD's monochromatic AM micro-LED micro-displays |
15.12.7. | AM micro-LED with directional emission |
15.12.8. | Application: 3 colour LED projector |
15.12.9. | High PPI AM micro-LED micro-display |
15.12.10. | AM micro-LED chips |
15.12.11. | Prototype for AR/VR |
15.13. | Japan Display Inc. (JDI) |
15.13.1. | JDI's prototype |
15.14. | Konka |
15.14.1. | Konka's efforts on Micro-LED displays |
15.14.2. | Konka's smart watch |
15.15. | Kyocera |
15.15.1. | Kyocera: high PPI micro-LED display |
15.15.2. | Kyocera: display design |
15.16. | LG |
15.16.1. | Micro LED Signage |
15.17. | Lumens |
15.17.1. | Lumens' micro-LED displays |
15.17.2. | Lumen's prototypes |
15.18. | Lumiode |
15.18.1. | Lumiode: introduction |
15.18.2. | Lumiode approach, process details |
15.18.3. | Lumiode's micro-LED performance |
15.18.4. | Lumiode's device performance |
15.19. | Micro Nitride |
15.19.1. | Micro Nitride: Introduction |
15.19.2. | Micro Nitride's technology |
15.20. | Mikro Mesa |
15.20.1. | About Mikro Mesa |
15.20.2. | Mikro Mesa's micro-LEDs |
15.20.3. | Mikro Mesa: Current injection |
15.21. | Nanjing CEC Panda FPD Technology |
15.21.1. | Introduction of CEC Panda |
15.21.2. | Micro-LED and oxide development of Panda |
15.22. | Plessey |
15.22.1. | Plessey: GaN-on-Silicon |
15.22.2. | Plessey's display development roadmap |
15.22.3. | LED manufacturing |
15.22.4. | Pixel development |
15.22.5. | RGB GaN on silicon |
15.22.6. | Plessey's core development |
15.22.7. | Prototype |
15.23. | PlayNitride |
15.23.1. | PlayNitride: Introduction |
15.23.2. | Role of PlayNitride at micro-LED ecosystem |
15.23.3. | PlayNitride timeline |
15.23.4. | PlayNitride's application market |
15.23.5. | PixeLED display structure |
15.23.6. | PixeLED MatrixTM tiling display technology |
15.23.7. | PlayNitride: Prototypes |
15.24. | Rohinni |
15.24.1. | Introduction of Rohinni |
15.24.2. | Technology |
15.24.3. | Product benefits example |
15.25. | Samsung |
15.25.1. | Samsung left LCD business |
15.25.2. | The Wall vs. The Window |
15.25.3. | LED Cinema Screen |
15.25.4. | Samsung's MicroLED Home Screen at CES 2021 |
15.25.5. | Samsung's QNED |
15.25.6. | Price of Samsung TVs |
15.25.7. | RGB one chip |
15.26. | Saphlux |
15.26.1. | Saphlux: introduction |
15.26.2. | NPQD technology |
15.27. | Sharp |
15.27.1. | Sharp: introduction |
15.27.2. | Process flow of Silicon Display |
15.27.3. | Display driver |
15.27.4. | Monolithic micro-LED array |
15.27.5. | Full colour realization |
15.27.6. | Prototypes made by Sharp |
15.27.7. | New spin-off |
15.28. | Sony |
15.28.1. | Sony: initial efforts |
15.28.2. | Sony: scalable display system |
15.28.3. | Sony: precise tiling |
15.28.4. | Sony: micro-LEDs |
15.28.5. | Sony: viewing angle advantages |
15.28.6. | Sony: active matrix driving with micro IC |
15.28.7. | Sony: HDR reproducibility |
15.28.8. | Sony: business strategy |
15.29. | Stan (Shenzhen) Technology |
15.29.1. | Stan Technology |
15.30. | TCL/CSOT |
15.30.1. | The Cinema Wall |
15.30.2. | TFT backplane-based micro-LED displays |
15.30.3. | TCL CSOT Mini LED roadmap |
15.31. | Visionox |
15.31.1. | Visionox's planning |
15.32. | VueReal |
15.33. | VueReal: introduction |
15.34. | VueReal: high efficiency micro-LEDs |
15.35. | VueReal: Inspection |
15.36. | VueReal: curing |
15.37. | VueReal: prototypes |
16. | APPENDIX |
16.1. | Colours and pixels |
16.2. | What is resolution? |
16.3. | Pixel pitch and fill factor |
16.4. | EQE and IQE |
16.5. | 3D colour volume |
16.6. | LCD panel structure |
16.7. | Active matrix-LCD structure |