5Gの技術、市場および見通し 2020-2030年: IDTechEx

5Gの市場は2030年までにおよそ7,200億ドルの規模に達するでしょう。

5Gの技術、市場および見通し 2020-2030年

5Gの技術および材料革新、インフラ、ユーザー機器(UE)、垂直アプリケーションおよび NB-IoT


製品情報概要目次価格 Related Content
IDTechExは今後数年間で急速な5Gインフラ展開や莫大な量の5G端末が市場に投入されることになると予測しています。5Gは2030年までにおよそ7,200億ドルの莫大な市場機会をもたらすでしょう。この調査レポートは、高周波数対応5G部材の特異なニッチを特定し、また5Gの市場機会を理解する上で必須となる5G技術と垂直アプリケーションに関する包括的な視点を提供しています。
5G is considered one of the largest market opportunities in the coming years, with large scale roll-out of infrastructures and rapid adoption of 5G devices and services. 5G will not only accelerate the growth and expansion of telecom; it will also redefine and accelerate industries such as automotive, entertainment, computing, and manufacturing. With high throughput and low latency, 5G is the most promising technique to tackle the high-value areas including 3D robotic control, virtual reality monitoring and remote medical control. Those are the problems that today's technologies have not addressed yet. However, the enormous investment required to develop 5G and the unclear map of killer applications for 5G also put the future of 5G to test. This report provides a holistic view of 5G technologies and vertical applications, which are essential to understanding the 5G market opportunity.
 
Many characteristic benefits promised by 5G will operate at high frequency (above 26 GHz), i.e. mmWave 5G. Such high frequency requires new materials and different device design. On one hand, high frequency leads to more significant transmission loss, which offers opportunities for low-loss materials with small dielectric constant and small tan loss. Advanced packaging designs aim at reducing the signal loss by integrated passive components into the whole package. On the other hand, high frequency needs high power to drive and will generate more heat. Power amplifiers with higher power density and higher gain will be essential, as well as thermal management. We point out the unique niches for 5G materials and design and highlight the trends for technology innovations.
 
In this report, we provide an unbiased and complete view across different 5G segments, including:
 
  • Introduction to 5G with the main advancements
  • Technology innovations in 5G, both 5G new radio technologies and 5G core network
  • 5G networks and user equipment, including base station and antennas, 5G chipset and module, 5G smartphones, fixed wireless devices and more
  • Challenges and market opportunities for high-frequency 5G materials and components, i.e. mmWave 5G
  • 5G vertical applications with comprehensive case studies in healthcare, automotive, consumer devices, smart factory and smart city
  • Roadmap and implementation of 5G globally
  • The current state of narrow-band Internet of Things, which now is also included in 5G
 
This report identifies and analyses the critical trends in 5G in the following areas:
 
  • The base station architecture and the rise of small cells
  • Active antennas and beamforming ICs
  • Radiofrequency front-end modules components, such as high-frequency filter, power amplifiers, EMI shielding and optical transceivers
  • 5G thermal management for station and smartphone
  • Killing applications for 5G, such as AR&VR, fixed wireless access, healthcare, smart factory and autonomous driving
  • Three waves of 5G investment in the coming years
 
This report also includes comprehensive company profiles for more than 20 key global players from infrastructure suppliers to telecommunication operators.
 
This report also comes with a ten-year forecast for the 5G revenue and connection number based on five global regions (US, China, Korea & Japan, Europe and others), 5G infrastructure and 5G component & infrastructure. The 5G market is expected to be around $720 bn by 2030, mainly contributing from the mobile service, fixed wireless services and narrow-band IoT.
 
Overview of 5G market forecast
 
 
Source: IDTechEx
IDTechEx のアナリストへのアクセス
すべての調査レポートの購入には、レポートの主な調査結果をお客様が直面しているビジネスの課題に関連付けることをお手伝いする専門のアナリストと最高30分電話でやり取りすることができる時間が含まれています。この特典は調査レポート購入後3ヶ月以内に利用する必要があります。
詳細
この調査レポートに関してのご質問は、下記担当までご連絡ください。

アイディーテックエックス株式会社 (IDTechEx日本法人)
担当: 村越美和子 m.murakoshi@idtechex.com
Table of Contents
1.EXECUTIVE SUMMARY
1.1.5G, next generation cellular communications network
1.2.What can 5G offer: high speed, massive connection and low latency
1.3.Two types of 5G: Sub-6 GHz and high frequency
1.4.Sub-6 GHz will be the first option for most operators
1.5.5G is live globally
1.6.5G for consumers overview
1.7.5G market forecast for services 2018-2030
1.8.5G Capex 2020-2025
1.9.Global trends and new opportunities in 5G
1.10.5G new radio technologies
1.11.5G core network technologies
1.12.5G base station types
1.13.Evolution of the cellular base station: overview
1.14.Trends in 5G network: easier for carriers to deploy
1.15.5G infrastructure: Huawei, Ericsson, Nokia, ZTE and Samsung
1.16.Global market share of 5G base station shipment in 2019
1.17.Competition landscape for key 5G infrastructure vendors
1.18.Trends in 5G: small cells will see a rapid growth
1.19.5G station number forecast (2020-2030) by region
1.20.5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto)
1.21.Trends in 5G antennas: active antennas and massive MIMO
1.22.Structure of massive MIMO system
1.23.Key challenges for massive MIMO deployment
1.24.Main suppliers of 5G active antennas unit (AAU)
1.25.Global market share and historic shipment of base station antennas and active antennas
1.26.Top infrastructure venders are now equipped with antennas capabilities
1.27.5G System on chip global market share 2019
1.28.List of 5G modems and SoC
1.29.5G user equipment landscape
1.30.5G smartphones vendors and devices
1.31.5G mobile shipment units 2018-2030
1.32.Market overview of the 5G CPE
1.33.Shipment of customer promised equipment and hotspots by units 2018-2030
1.34.Overview of challenges, trends and innovations for high frequency 5G
1.35.Dielectric constant: benchmarking different substrate technologies
1.36.Loss tangent: benchmarking different substrate technologies
1.37.Moisture uptake: benchmarking different substrate technologies
1.38.Radio frequency front end module (RF FEM)
1.39.Power amplifier and beamforming component forecast
1.40.Filter technologies that can work at mmWave 5G and which one will be the future
1.41.Benchmarking different transmission lines filters
1.42.The choice of the semiconductor technology for power amplifiers
1.43.Key semiconductor properties
1.44.Summary of RF GaN Suppliers
1.45.Semiconductor choice forecast
1.46.Semiconductor forecast (2020-2030) for power amplifiers (GaN, LDMOS, SiGe/Si) by die area
1.47.What is Electromagnetic interference shielding and why it matters to 5G
1.48.Challenges and key trends for EMI shielding for 5G devices
1.49.Optical devices key players and their market share
1.50.Optical transceiver module supply chain and key players
1.51.TIM considerations
1.52.Properties of Thermal Interface Materials
1.53.Total TIM forecast for 5G stations
1.54.5G now incorporates NB-IoT and LTE-M
1.55.Global deployment of NB-IoT and LTE-M
1.56.Key players
1.57.Overview of the 5G forecast
2.INTRODUCTION TO 5G
2.1.5G, next generation cellular communications network
2.2.Evolution of mobile communications
2.3.What can 5G offer: high speed, massive connection and low latency
2.4.5G is suitable for vertical applications
2.5.5G for consumers overview
2.6.Two types of 5G: Sub-6 GHz and high frequency
2.7.Sub-6 GHz will be the first option for most operators
2.8.Why does 5G have lower latency radio transmissions
2.9.5G is built on LTE (4G) technology
2.10.The main technique innovations
2.11.5G supply chain
2.12.Two waves of 5G
2.13.First wave of 5G smartphones
2.14.Fixed wireless access to 5G / customer-premises equipment (CPE)
2.15.5G investments at three stages
2.16.Capex spend for 5G infrastructure
2.17.Case study: expected 5G investment for infrastructure in China
2.18.Key players in 5G technologies
2.19.5G patents by countries
2.20.5G patents by companies
2.21.5G is live globally
2.22.Charge for 5G service
2.23.5G Capex 2020-2025
2.24.Global trends and new opportunities in 5G
3.5G TECHNOLOGY INNOVATIONS
3.1.End-to-end technology overview
3.2.5G new radio technologies
3.3.Large number of antennas: massive MIMO
3.4.Massive MIMO enables advanced beam forming
3.5.Massive MIMO challenges and possible solutions
3.6.Massive MIMO requires active antennas
3.7.High frequency communication: mmWave
3.8.New multiple access methods: Non-orthogonal multiple-access techniques (NOMA)
3.9.Advanced waveforms and channel coding
3.10.Comparison of Turbo, LDPC and Polar code
3.11.Ultra dense network
3.12.Challenges for UDN
3.13.5G core network technologies
3.14.Comparison of 4G core and 5G core
3.15.Service based architecture (SBA)
3.16.Edge-computing
3.17.Network slicing
3.18.Spectrum sharing
4.5G INFRASTRUCTURE AND USER EQUIPMENT
4.1.Base station
4.1.1.5G base station types
4.1.2.Evolution of the cellular base station: overview
4.1.3.Trends in 5G: base station architecture
4.1.4.Architecture of macro cell
4.1.5.Key challenges for 5G macro cell
4.1.6.Trends in 5G network: easier for carriers to deploy
4.1.7.5G infrastructure: Huawei, Ericsson, Nokia, ZTE and Samsung
4.1.8.Global market share of 5G base station shipment in 2019
4.1.9.Competition landscape for key 5G infrastructure vendors
4.1.10.5G contracts landscape for key 5G infrastructure vendors
4.1.11.Trends in 5G: small cells will see a rapid growth
4.1.12.Case study: Ericsson 5G radio dot
4.1.13.Case study: Ericsson rural coverage solutions
4.2.Active antennas and beam forming ICs
4.2.1.What are active antennas
4.2.2.Trends in 5G antennas: active antennas and massive MIMO
4.2.3.Antenna array architectures for beam forming
4.2.4.Approach to beam forming
4.2.5.Structure of massive MIMO system
4.2.6.Key challenges for massive MIMO deployment
4.2.7.LTE antenna tear down
4.2.8.Active antennas design: planar vs non-planar
4.2.9.5G base station teardown
4.2.10.Sub-6 GHz antenna teardown
4.2.11.mmWave antenna teardown
4.2.12.28GHz all-silicon 64 dual polarized antenna
4.2.13.IDT (Renesas) has a strong position in beam-forming ICs
4.2.14.IDT (Renesas) 28Ghz 2x2 4-channel SiGe beamforming IC
4.2.15.Anokiwave: Tx/Rx 4-element 3GPP 5G band all in silicon
4.2.16.Anokiwave: 256-element all-silicon array
4.2.17.Sivers IMA: dual-quad 5G dual-polarized beam forming IC
4.2.18.Analog: a 16-channel dual polarized beam-forming IC?
4.2.19.NEC's new antenna technology
4.2.20.Case study: Ericsson antenna systems for 5G
4.2.21.Main suppliers of 5G active antennas unit (AAU) (1)
4.2.22.Case study: NEC 5G Radio Unit
4.2.23.Case study: Nokia AirScale mMIMO Adaptive Antenna
4.2.24.Case study: Samsung 5G Access solution for SK telecom
4.2.25.Global market share and historic shipment of base station antennas and active antennas
4.2.26.Top infrastructure venders are now equipped with antenna capabilities
4.2.27.5G antennas for smartphone
4.3.Chipsets and modules
4.3.1.5G Chipsets
4.3.2.System on chip global market share 2019
4.3.3.Landscape of different types of chipsets
4.3.4.Examples: 5G chipset and module
4.3.5.List of 5G modems and SoC
4.3.6.List of 5G modules
4.3.7.Case study: MediaTek 5G Modem Helio M70
4.3.8.Case study: Huawei 5G modem Balong 5000
4.3.9.Case study: Qualcomm 5G modem Snapdragon X55
4.3.10.Case study: Qualcomm Snapdragon 855 SoC
4.3.11.Case study: Qualcomm small cell 5G platform (FSM 100xx)
4.4.User equipment
4.4.1.5G user equipment landscape
4.4.2.5G smartphone overview
4.4.3.5G smartphones vendors and devices
4.4.4.5G mobile shipment units 2018-2030
4.4.5.2019 shipment of smartphone by venders
4.4.6.Case study: Huawei Mate X 5G smartphone
4.4.7.Case study: ZTE Axon 10 Pro 5G smartphone
4.4.8.Case study: Motorola 5G mod Moto5G smartphone
4.4.9.Case study: Samsung Galaxy S10 5G smartphone
4.4.10.Market overview of the 5G CPE
4.4.11.List of 5G CPE and Hotspot
4.4.12.Shipment of customer promised equipment and hotspots by units 2018-2030
4.4.13.5G fixed wireless devices
4.4.14.Case study: Huawei CPE Pro
4.4.15.Case study: Nokia FastMile 5G Gateway
5.CHALLENGES FOR MMWAVE 5G MATERIALS AND COMPONENTS
5.1.Low-loss materials for 5G
5.1.1.Overview of the high level requirements for high frequency operation
5.1.2.Dielectric constant: benchmarking different substrate technologies
5.1.3.Effect of low dielectric constant (I): feature sizes
5.1.4.Effect of low dielectric constant (II): thinness
5.1.5.Loss tangent: benchmarking different substrate technologies
5.1.6.Loss tangent: stability vs frequency for different substrates
5.1.7.Dielectric constant and loss tangent stability: behaviour at mmWave frequencies and higher
5.1.8.Temperature stability of dielectric constant: benchmarking organic substrates
5.1.9.Moisture uptake: benchmarking different substrate technologies
5.2.Radio frequency (RF) Front-end module and optical components
5.2.1.Trend in 5G: Radio Frequency devices moves to new materials and technologies
5.2.2.Radio frequency front end module (RF FEM)
5.2.3.Density of components in RFFE
5.2.4.RF module design architecture
5.2.5.Trend in 5G: antennas integrated with mmWave RFFE
5.2.6.Key players for RF FEM (smartphone) by the component types
5.2.7.RF FEM suppliers for LTE-advanced smartphone
5.2.8.Case study: Qorvo's GaN RF FEMs for mmWave
5.2.9.Case study: Qualcomm 5G NR Modem-to-Antenna module
5.2.10.Case study: MediaTek RFFE solution for 5G NR sub-6 GHz
5.2.11.Optical devices key players and their market share
5.2.12.Optical transceiver module supply chain and key players
5.2.13.Case study: SK Telecom 5G 5G-PON to reduce the use of fiber
5.3.mmWave 5G filters
5.3.1.Filter technologies that can work at mmWave 5G and which one will be the future
5.3.2.Challenge and requirements for filters to work at mmWave 5G
5.3.3.SAW and BAW filters are incumbent technologies but not suitable for mmWave 5G
5.3.4.What are waveguide filters and their pros and cons
5.3.5.What are transmission lines filter and overview of different technologies
5.3.6.Substrate integrated waveguide filters (SIW)
5.3.7.Single-layer transmission-line filters on PCB
5.3.8.Single-layer transmission-line filters on ceramic
5.3.9.Other substrate options: thin or thick film and glass
5.3.10.Multilayer low temperature co-fired ceramic (LTCC) filters
5.3.11.Multilayer LTCC: production challenge
5.3.12.Examples of multilayer LTCC from key suppliers
5.3.13.Benchmarking different transmission lines filters
5.4.mmWave 5G Power amplifier
5.4.1.The choice of the semiconductor technology for power amplifiers
5.4.2.Key semiconductor properties
5.4.3.GaN to win in sub-6 GHz 5G
5.4.4.GaN is promising for mmWave 5G power amplifiers
5.4.5.GaAs vs GaN for RF power amplifiers
5.4.6.GaAs vs GaN: power density and footprint
5.4.7.GaAs vs GaN: reliability and dislocation density
5.4.8.Why GaN and GaAs both have their place?
5.4.9.Power vs frequency map of power amplifier technologies
5.4.10.GaN-on-Si, SiC or Diamond for RF
5.4.11.Summary of RF GaN Suppliers
5.4.12.Semiconductor choice forecast
5.4.13.Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area
5.5.Ink-based conformable package-level electromagnetic interference shielding
5.5.1.What is electromagnetic interference shielding and why it matters to 5G
5.5.2.Challenges and key trends for EMI shielding for 5G devices
5.5.3.Package-level EMI shielding
5.5.4.Conformal coating: increasingly popular
5.5.5.Has package-level shielding been adopted?
5.5.6.Examples of package-level shielding in smartphones
5.5.7.Which suppliers and elements have used EMI shielding?
5.5.8.Overview of conformal shielding process
5.5.9.What is the incumbent process for PVD sputtering?
5.5.10.Screen printed EMI shielding: process and merits
5.5.11.Spray-on EMI shielding: process and merits
5.5.12.Suppliers targeting ink-based conformal EMI shielding
5.5.13.Henkel: performance of EMI ink
5.5.14.Duksan: performance of EMI ink
5.5.15.Ntrium: performance of EMI ink
5.5.16.Clariant: performance of EMI ink
5.5.17.Fujikura Kasei: performance of EMI ink
5.5.18.Spray machines used in conformal EMI shielding
5.5.19.Particle size and morphology choice
5.5.20.Ink formulation challenges: thickness and Ag content
5.5.21.Ink formulation challenges: sedimentation prevention
5.5.22.EMI shielding: inkjet printed particle-free Ag inks
5.5.23.EMI shielding: inkjet printed particle-free Ag inks
5.5.24.Agfa: EMI shielding prototype
5.5.25.Has there been commercial adoption of ink-based solutions?
5.5.26.Compartmentalization of complex packages is a key trend
5.5.27.The challenge of magnetic shielding at low frequencies
5.5.28.Value proposition for magnetic shielding using printed inks
5.6.5G Thermal management
5.6.1.TIM considerations
5.6.2.Properties of Thermal Interface Materials
5.6.3.TIM forecast for 5G
5.6.4.Thermal considerations for cell towers and base stations
5.6.5.Thermal considerations for small cells
5.6.6.Board-level heat dissipation: thermal interface materials
5.6.7.Indium foils as a good board-level TIM option
5.6.8.Thermal management for antennas
5.6.9.Thermal management for smartphone: typical path for heat
5.6.10.Thermal management for smartphone: thermal throttling
5.6.11.Thermal management for smartphone: Materials selection
5.6.12.Thermal management for smartphone: Heat dissipation
5.6.13.Thermal management for smartphone: Heat sinks and heat spreaders
5.6.14.Thermal management for smartphone: Heat pipes/ vapour chambers
5.6.15.Thermal management for smartphone: Vapour chambers OEMs
5.6.16.Thermal management for smartphone: Thermoelectric Cooling (TEC)
5.6.17.Smartphone cooling now and in the future
5.6.18.Smartphone thermal interface material (TIM) estimate summary
5.6.19.Thermal interface material and heat spreader forecast in smartphones by area
6.5G VERTICAL APPLICATIONS BEYOND MOBILE
6.1.5G for consumers
6.1.1.5G for TV service and internet at home
6.1.2.5G for XR (AR and VR)
6.1.3.Computers integrated with 5G connectivity
6.1.4.5G for AR sports viewing platform based on cloud computing
6.1.5.5G cloud game streaming
6.1.6.5G for connected plane
6.1.7.LiFi: complementary to 5G system
6.1.8.Other 5G use cases
6.1.9.Case study: Vodafone 5G live commercial network
6.2.5G for healthcare
6.2.1.5G for automation: remote surgery
6.2.2.Case study: China Mobile 5G for remote medical services
6.2.3.Case study: Smart Cyber Operating Theater (SCOT)
6.3.5G for industrial
6.3.1.5G smart manufacturing overview
6.3.2.5G for Industrial Internet of Things (IIoT)
6.3.3.Selected use cases of 5G in future factory
6.3.4.5G alliance for connected industries and automation (5G ACIA)
6.3.5.Connectivity options for IoT
6.3.6.5G for connected industries
6.3.7.Case study: 5G for Industry 4.0 in Nokia Factory
6.3.8.Case study: Nokia Future X architecture
6.3.9.Case study: Nokia automated harbour operation
6.3.10.Case study: Ericsson 5G for smart manufacturing
6.3.11.Case study: NTT docomo smart construction powered by 5G & IoT
6.4.5G for autonomous driving and C-V2X
6.4.1.Why Vehicle-to-everything (V2X) is important for future autonomous vehicles
6.4.2.Two type of V2X technology: Wi-Fi vs cellular
6.4.3.Regulatory: Wi-Fi based vs C-V2X
6.4.4.C-V2X assist the development of smart mobility
6.4.5.How C-V2X can support smart mobility
6.4.6.C-V2X includes two parts: via base station or direct communication
6.4.7.C-V2X via base station: vehicle to network (V2N)
6.4.8.5G technology enable direct communication for C-V2X
6.4.9.Architecture of C-V2X technology
6.4.10.Use cases and applications of C-V2X overview
6.4.11.C-V2X for automated driving use case
6.4.12.Use cases of 5G NR C-V2X for autonomous driving
6.4.13.Other use cases
6.4.14.Case study: 5G to provide comprehensive view for autonomous driving
6.4.15.Case study: 5G to support HD content and driver assistance system
6.4.16.Timeline for the deployment of C-V2X
6.4.17.Progress so far
6.4.18.Landscape of supply chain
6.4.19.5G for autonomous vehicle: 5GAA
6.4.20.Ford C-V2X from 2022
7.ROADMAP AND IMPLEMENTATION
7.1.5G roadmap and timeline: finalising standardisation
7.2.5G deployment: standalone vs non-standalone
7.3.5G deployment options and migration strategy
7.4.Different deployment types in the same network
7.5.Technical comparison of NSA and SA 5G
7.6.Economic comparison of NSA and SA 5G
7.7.5G migration strategies for some key players
7.8.Overview of global 5G roll-out
7.9.Global 5G roll-out outlook
7.10.Charges for 5G mobile service
7.11.Considerations in deployment of 5G network
7.12.What do we expect for 5G
7.13.5G in USA
7.14.5G in China: overview
7.15.Base station in China by Telecoms
7.16.Base station in China by Cities
7.17.5G in China: 5G station deployment forecast 2020-2030
7.18.5G impact in Chinese economic
7.19.5G investment in China
7.20.4G still dominates the Chinese telecom investment in 2019
7.21.5G in Europe
7.22.5G in South Korea
7.23.5G in South Korea: KT case study
7.24.5G in Japan
7.25.5G in Canada
7.26.5G in Australia
7.27.5G in The Philippines
7.28.Challenges and future
8.NB-IOT AND LTE-M
8.1.5G now incorporates NB-IoT and LTE-M
8.2.Global deployment of NB-IoT and LTE-M
8.3.Key players
8.4.NB-IoT revenue 2018-2030
8.5.NB-IoT module shipment 2018-2030
8.6.NB-IoT, eMTC and 5G will cover different aspects
8.7.Comparison to other LPWAN technologies
8.8.NB-IoT is a better solution for LPWAN
8.9.Porters five force analysis of the LPWAN industry
8.10.LTE-M vs NB-IoT
8.11.Huawei & Vodafone leading the way in NB-IoT
8.12.Examples of companies partnering with Huawei on NB-IoT
8.13.Inside the Vodafone NB-IoT open lab
8.14.T-Mobile rolls the dice on NB-IoT
8.15.NB-IoT driven by the Chinese market
8.16.ARM backs NB-IoT
8.17.NB-IoT networks can be deployed by using the existing sites
8.18.Target market segments for NB-IoT
8.19.Use cases of NB-IoT: B2G (government)
8.20.Use cases of NB-IoT: B2B (1)
8.21.Use cases of NB-IoT: B2B (2) animal tracking
8.22.Use cases of NB-IoT: B2B (3) logistics tracking
8.23.Use cases of NB-IoT: B2C
8.24.Use cases of LTE-M: smartwatch industry
8.25.Case study: T-Mobile trial of NB-IoT for smart city
8.26.Examples of NB-IoT modules
8.27.Case study: Quectel LTEBG96 system on a chip
8.28.Hurdles to NB-IoT rollout
8.29.NB-IoT/LTE-M global implementation
8.30.NB-IoT trials
8.31.Examples of Cellular operators trialling or deploying NB-IoT
8.32.The first commercial NB-IoT network launches in Europe
8.33.LTE-M rolls out in America
8.34.Case study: China Mobile IoT
8.35.NB-IoT innovators: 500+
9.5G MARKET FORECAST
9.1.5G forecast by services
9.1.1.Forecast methodology
9.1.2.5G market forecast for services 2018-2030
9.1.3.5G subscription to mobile service by geography 2018-2030
9.1.4.5G mobile shipment units 2018-2030
9.1.5.Fixed wireless access service revenue 2018-2030
9.1.6.Shipment of customer promised equipment and hotspots by units 2018-2030
9.1.7.NB-IoT revenue 2018-2030
9.1.8.NB-IoT module shipment 2018-2030
9.2.5G forecast by infrastructure
9.2.1.Forecast methodology
9.2.2.5G station number forecast (2020-2030) by region
9.2.3.5G station installation forecast (2020-2030) by frequency
9.2.4.5G station instalment number forecast (2020-2030) by type of cell (macro, micro, pico/femto)
9.3.5G forecast by infrastructure components and materials
9.3.1.Power amplifier and beamforming component forecast
9.3.2.MIMO size forecast (2020-2030)
9.3.3.Antenna elements forecast
9.3.4.Antenna PCB material forecast
9.3.5.Thermal interface material and heat spreader forecast in smartphones by area
10.COMPANY PROFILES
10.1.Huawei: Overview
10.2.Huawei: ten year revenue, market segments and geography
10.3.Huawei core suppliers and their products for Huawei
10.4.Nokia: Overview
10.5.Nokia: ten year revenue, market segments and geography
10.6.Nokia 5G technologies
10.7.Ericsson: overview
10.8.Ericsson: ten year revenue, market segments and geography
10.9.Ericsson: history from AXE to 5G
10.10.Ericsson: FDD and spectrum sharing
10.11.ZTE: 5G Overview (1)
10.12.ZTE: 5G Overview (2)
10.13.Samsung: 5G overview
10.14.Samsung: 5G Access solutions for SK telecom
10.15.Qualcomm: overview
10.16.Qualcomm: ten year revenue, market segments and geography
10.17.Qualcomm: use cases overview
10.18.Qualcomm: 5G devices / infrastructure overview
10.19.5G and NB-IoT in Qualcomm
10.20.Qualcomm for IoT
10.21.Intel: Overview
10.22.Intel: ten year revenue, market segments and geography
10.23.Qorvo: overview
10.24.Qorvo: 5G products
10.25.Qorvo: ten year revenue, market segments and geography
10.26.Qorvo sub-6 GHz products
10.27.Qorvo mmWave products
10.28.Qorvo and Gapwaves mmWave antenna
10.29.Qorvo 39 GHz antenna
10.30.Skyworks Solutions: overview
10.31.Skyworks solution : ten year revenue and geography
10.32.NXP Semiconductors: overview
10.33.NXP: ten year revenue, market segments and geography
10.34.NXP Semiconductor
10.35.NXP Semiconductor
10.36.MediaTek: 5G overview
10.37.NEC: 5G overview
10.38.NEC: 5G vertical business platform
10.39.China Mobile: 5G overview
10.40.NTT docomo: 5G overview
10.41.DOCOMO: patent in 5G
10.42.Docomo: partners for 5G
10.43.Docomo: partners for 5G
10.44.AT&T: 5G overview
10.45.Verizon: 5G overview
10.46.SK Telecom: 5G overview
10.47.KT Corporation: 5G overview
10.48.Vodafone: 5G overview
10.49.Orange: 5G overview
10.50.Telefónica: 5G overview
10.51.Ooredoo: 5G overview
10.52.Saudi Telecom Company (STC): 5G overview
 

価格および注文方法

5Gの技術、市場および見通し 2020-2030年

£$¥
電子版_PDF(ユーザー 1-5名)
£4,450.00
電子版_PDF(ユーザー 6-10名)
£6,450.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
£4,850.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
£6,850.00
電子版_PDF(ユーザー 1-5名)
€5,075.00
電子版_PDF(ユーザー 6-10名)
€7,250.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
€5,500.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
€7,750.00
電子版_PDF(ユーザー 1-5名)
$5,750.00
電子版_PDF(ユーザー 6-10名)
$8,250.00
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
$6,250.00
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
$8,750.00
電子版_PDF(ユーザー 1-5名)
¥598,000
電子版_PDF(ユーザー 6-10名)
¥868,000
電子版_PDFおよびハードコピー1部(ユーザー 1-5名)
¥648,000
電子版_PDFおよびハードコピー1部(ユーザー 6-10名)
¥928,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

レポート概要

スライド 498
フォーキャスト 2030
発行日 Jun 2020
 

コンテンツのプレビュー

pdf Document Webinar Slides
pdf Document Sample pages
 
 
 
 

Subscription Enquiry