1. | EXECUTIVE SUMMARY |
1.1. | Radars Are Now Common on Private Vehicles |
1.2. | Functions of Autonomous Driving at Different Levels |
1.3. | Future Vehicles and Radar |
1.4. | Adoption of ADAS |
1.5. | Radar Has a Key Place in Automotive Sensors |
1.6. | Front Radar Applications |
1.7. | The Role of Side Radars |
1.8. | Radar Performance Trends |
1.9. | Radar Trilemma |
1.10. | Radar Anatomy |
1.11. | Automotive Radars: Frequency Trends |
1.12. | Trends in Transceivers |
1.13. | Multiple Inputs, Multiple Outputs |
1.14. | Radar Board Trends |
1.15. | Radar Suppliers: Tier 1s and Start Ups |
1.16. | Leading players - tier 1 suppliers |
1.17. | Transceiver suppliers |
1.18. | Supply chain |
1.19. | Autonomy Automotive Leaders |
1.20. | Car Sales Forecast Broken Down by SAE Level |
1.21. | Radar Unit Sales by Application Forecast 2015-2042 |
1.22. | Radar Revenue by Region Forecast 2015-2042 |
1.23. | Radar Frequency Forecast 2015-2042 |
1.24. | Radar Semiconductor Forecast 2015-2042 |
1.25. | Radar Forecast by No. Virtual Channels 2015-2042 |
1.26. | Transceiver Demand for Radar Forecast 2015-2042 |
1.27. | Materials for Radar Forecast 2015-2042 |
1.28. | 17 IDTechEx Portal Profiles |
2. | INTRODUCTION |
2.1. | Overview |
2.1.1. | Radar |
2.1.2. | Typical Sensor Suite for Autonomous Cars |
2.1.3. | Sensors and their Purpose |
2.1.4. | Where does Radar Sit in the Sensor Trifactor |
2.1.5. | Radar - Radio Detection And Ranging |
2.1.6. | Functions of Autonomous Driving at Different Levels |
2.1.7. | Adoption of ADAS |
2.1.8. | SAE Levels of Automation in Cars |
2.1.9. | Why Automate Cars? |
2.1.10. | Privately Owned Autonomous Vehicles |
2.1.11. | Safety Mandated Features Driving Wider Radar Adoption. |
2.1.12. | The Impact of COVID-19 |
2.1.13. | Evolution of Sensor Suite from Level 1 to Level 4 |
2.1.14. | Quantity per car - Level 2 |
2.1.15. | Sensors per vehicle: level 3 and above |
2.1.16. | Front Radar Applications |
2.1.17. | Side Radars |
2.1.18. | No More Medium Range Radar (MRR) |
2.1.19. | Occupant Detection |
2.1.20. | Radar Anatomy |
2.1.21. | Radar Key Components |
2.1.22. | Primary Radar Components - The Antenna |
2.1.23. | Primary Radar Components - the RF Transceiver |
2.1.24. | Primary Radar Components - MCU |
2.1.25. | Primary Radar Components - Frequency |
2.2. | Regulatory & Legislative Progress Enabling Autonomy Adoption |
2.2.1. | EU Mandating Level 2 Autonomy from July 2022 |
2.2.2. | Privately Owned Autonomous Vehicles |
2.2.3. | Legislation and Autonomy |
2.2.4. | Level 3, Legislation, UK, Europe and Japan |
2.2.5. | Level 3, Legislation, UK, Europe and Japan |
2.2.6. | The European Commission's Roadmap to Autonomy |
2.2.7. | Level 3, Legislation, US |
2.2.8. | Level 3, Legislation, China |
2.2.9. | The Autonomous Legal Race |
2.3. | Example Sensor Suites |
2.3.1. | Emerging Level 2+ Terminology. |
2.3.2. | Sensor Suite Disclaimer |
2.4. | Privately Owned Vehicles |
2.4.1. | Audi A8 - Sensor suite |
2.4.2. | Honda Legend - Sensor suite |
2.4.3. | Tesla Autopilot - Sensor Suite |
2.4.4. | Tesla's Relationship with Sensors |
2.4.5. | Cadillac Escalade - Sensor suite |
2.4.6. | Mercedes S-class - Sensor Suite |
2.4.7. | BMW iX - Sensor Suite. |
2.4.8. | Volkswagen ID.Buzz - Sensor Suite |
2.4.9. | Lexus LS and Toyota Mirai |
2.4.10. | Nissan ProPilot 2.0 - Sensor Suite |
2.4.11. | PSA's self driving sensor suite |
2.4.12. | Arcfox Alpha S - Sensor suite |
2.4.13. | Xpeng P5 - Sensor suite |
2.4.14. | BYD Han - Sensor suite |
2.4.15. | Geely Xing Yue L - Sensor suite |
2.4.16. | Changan UNI-T - Sensor suite |
2.4.17. | Autonomy Automotive Leaders |
2.4.18. | Leaders |
2.4.19. | Sensor suit meta-data |
2.5. | Mobility as a Service (MaaS) |
2.5.1. | Waymo Sensor Suite |
2.5.2. | Cruise Sensor Suite. |
2.5.3. | AutoX Sensor Suite |
2.5.4. | Baidu/Apollo Sensor Suite |
2.5.5. | Pony.ai Sensor Suite |
2.5.6. | WeRide Sensor Suite |
2.5.7. | DiDi Sensor Suite |
2.5.8. | Aurora Sensor Suite |
2.5.9. | Zoox Sensor Suite |
2.5.10. | Motional & Aptiv Sensor Suite |
2.5.11. | MaaS Sensor Analysis |
2.5.12. | MaaS Sensor Suite Analysis. |
2.6. | ADAS Control Units |
2.6.1. | ADAS Control units, Distributed vs Centralised |
2.6.2. | Distributed Examples - Radar + ACC ECU |
2.6.3. | Distributed Example - Camera + Lane Departure ECU |
2.6.4. | Distributed ADAS from Tier 1 perspective |
2.6.5. | Quantity per car |
2.6.6. | Leading players |
2.6.7. | Connectivity info - radar |
2.6.8. | Connectivity info - ADAS controller |
3. | TIER 1 RADARS, START-UP RADARS & TIER 2 TRANSCEIVERS |
3.1. | Overview |
3.1.1. | Radar Key Performance Indicators |
3.1.2. | Texas Instruments - CMOS Transceiver with AOP |
3.1.3. | Texas Instruments Range of Integration |
3.1.4. | NXP - CMOS Transceiver |
3.1.5. | STMicroelectronics - SiGe Transceiver |
3.1.6. | Infineon - SiGe Transceiver, CMOS coming |
3.1.7. | Analogue Devices |
3.1.8. | Global Foundries - CMOS Partnership with Bosch |
3.1.9. | Continental ARS540 - Product |
3.1.10. | Continental |
3.1.11. | Bosch |
3.1.12. | Denso |
3.1.13. | Toyota moving away from Denso to ZF/Mobileye |
3.1.14. | Hella |
3.1.15. | ZF - Future |
3.1.16. | Magna fails to acquire Veoneer, But Supplies Next Gen. Radar to Fisker |
3.1.17. | Other Tier 1s |
3.1.18. | Tier 1 Leaders and Laggards |
3.1.19. | Mobileye |
3.1.20. | Oculii |
3.1.21. | Oculii and its Investors |
3.1.22. | Arbe |
3.1.23. | Arbe and its Investors |
3.1.24. | Metawave |
3.1.25. | Metawave and its Investors |
3.1.26. | Zadar |
3.1.27. | Smart Radar System (SRS) |
3.1.28. | Vayyar - Chip Manufacturer |
3.1.29. | Lunewave - Chip Manufacturer |
3.1.30. | Others |
3.1.31. | Key Player Revenues and Key Start Up Fundings |
3.1.32. | Supply Chain Changes |
3.1.33. | Financial Void and Massive Hurdles |
4. | BROAD TRENDS IN RADAR |
4.1. | Overview |
4.1.1. | IDTechEx Radar Trends Primary Research Method |
4.1.2. | Radar Trends: Volume and Footprint |
4.1.3. | Radar Trends: Packaging and Performance |
4.1.4. | Radar Trends: Increasing Range |
4.1.5. | Radar Trends: Field of View |
4.1.6. | Radar Trends: Angular Resolution (lower is better) |
4.1.7. | Radar Trends: Virtual Channel Count |
4.1.8. | Radar Trends: Virtual Channels and Resolution |
4.1.9. | Radars Limited Resolution |
4.1.10. | Two Approaches to Larger Channel Counts |
4.1.11. | Board Trends |
4.1.12. | Radar Trilemma |
4.2. | Radar in Localisation |
4.2.1. | Localisation |
4.2.2. | What is Localisation? |
4.2.3. | Localization: Absolute vs Relative |
4.2.4. | Radar Mapping |
4.2.5. | Radar Localisation: Navtech |
4.2.6. | Radar Localisation: GPR (previously WaveSense) |
4.3. | Waveforms and MIMO |
4.3.1. | Introduction to Waveforms |
4.3.2. | Typical performance using FMCW (single Tx/Rx) |
4.3.3. | Typical performance using FMCW (single Tx/Rx) |
4.3.4. | Multiple Inputs, Multiple Outputs |
4.3.5. | Scaling up of MIMO |
4.3.6. | Oculii |
4.3.7. | Orthogonal Frequency Division Multiplexing |
4.3.8. | Multiple Frequency Shift Key |
4.3.9. | Random/Noise/Digital Code Modulation |
4.3.10. | Unhder - Chip Developer |
4.4. | Frequency trends |
4.4.1. | Which Way is Frequency Going? |
4.4.2. | Applications of different frequencies. |
4.4.3. | Applications of different frequencies |
4.4.4. | Automotive Radars: Frequency Trends |
4.4.5. | Radar: Which Parameters Limit the Achievable KPIs |
4.4.6. | The significance of frequency and angular resolution |
4.4.7. | Impact of Frequency and Bandwidth on Angular Resolution |
4.4.8. | Packaging Benefits |
4.4.9. | Ranging |
4.4.10. | Surface Ice Detection |
4.4.11. | A Future Generation Radar? |
4.4.12. | Adoption Path of High Frequency Radars |
4.4.13. | Challenges and Hurdles for High Frequency Radar |
4.4.14. | Regulation |
4.5. | Transceivers, Semiconductors and Cascading |
4.5.1. | The trend towards smaller transistors. |
4.5.2. | Transceivers Semiconductor Trends: Power and Noise |
4.5.3. | Transceivers Semiconductor Trends: Virtual Channels |
4.5.4. | SiGe BiCMOS |
4.5.5. | CMOS |
4.5.6. | FD-SOI |
4.5.7. | The Future |
4.5.8. | Timeline |
4.5.9. | Radar Players and Technologies |
4.6. | Key properties of semiconductors utilized in RF front end (RFFE) in 5G applications |
4.6.1. | Key semiconductor properties |
4.7. | Choice of semiconductor for amplifiers in different types of base stations |
4.7.1. | Power vs frequency map of power amplifier technologies |
4.7.2. | The choice of the semiconductor technology for power amplifiers |
4.7.3. | GaN to win in sub-6 GHz 5G (for macro and microcell (> 5W)) |
4.8. | Company profiles of RF amplifiers suppliers |
4.8.1. | Skyworks Solutions |
4.8.2. | Ampleon |
4.8.3. | Analog Devices |
4.8.4. | Cree-Wolfspeed |
4.8.5. | Wolfspeed GaN-on-SiC adoption |
4.8.6. | Infineon |
4.8.7. | MACOM |
4.8.8. | Mitsubishi Electric |
4.8.9. | Mitsubishi Electric |
4.8.10. | Northrop Grumman |
4.8.11. | NXP Semiconductor |
4.8.12. | Qorvo |
4.8.13. | Qorvo sub-6 GHz products |
4.8.14. | Qorvo mmWave products |
4.8.15. | RFHIC |
4.8.16. | Sumitomo Electric |
4.9. | Radomes, Antennas, Materials and Board Trends. |
4.9.1. | Importance of the Radome |
4.9.2. | Radome and range |
4.9.3. | Ideal Radome Properties |
4.9.4. | Radome Shape Considerations |
4.9.5. | Preperm |
4.9.6. | DuPont - Crastin & Laird (a DuPont company) |
4.9.7. | Radar Aesthetics, Form and Function |
4.9.8. | Other material considerations |
4.9.9. | Key Material Suppliers |
4.9.10. | Dielectric constant: benchmarking different substrate technologies |
4.9.11. | Dielectric constant: stability vs frequency for different organic substrates (PI, PTFE, LCP, thermosets, etc.) |
4.9.12. | Dielectric constant: stability vs frequency for different inorganic substrates (LTCC, glass) |
4.9.13. | Loss tangent: benchmarking different substrate technologies |
4.9.14. | Loss tangent: stability vs frequency for different substrates |
4.9.15. | Dielectric constant and loss tangent stability: behaviour at mmwave frequencies and higher |
4.9.16. | Temperature stability of dielectric constant: benchmarking organic substrates |
4.9.17. | Moisture uptake: benchmarking different substrate technologies |
4.9.18. | Antenna Design |
4.9.19. | Patch Array Design |
4.9.20. | Patch Array in Practice |
4.9.21. | Phased Array Antennas |
4.9.22. | Metawave - analogue beamforming/beam steering |
4.9.23. | Echodyne |
4.9.24. | Lunewave - 3D printed antenna |
4.9.25. | Antenna Miniaturisation |
4.9.26. | Board Trends |
5. | RADAR MARKET, SUPPLIERS, SHARES, STRUCTURE, CHANGES |
5.1. | Availability of ADAS |
5.2. | Adoption of ADAS Driving Radar Growth |
5.3. | Leading players - tier 1 suppliers |
5.4. | Side and Front Radar Shares |
5.5. | Leading Tier 1s by Revenue |
5.6. | Geographical Market Share |
5.7. | Transceiver suppliers |
5.8. | Supplier relations (transceivers) |
5.9. | Mixed supply chain |
5.10. | Consolidation of Tier 2 products |
5.11. | Emerging players/Start ups |
6. | FORECASTS |
6.1. | MaaS market entry by region |
6.2. | Method: Growth seed and addressable market |
6.3. | Global MaaS adoption forecast 2022-2042 |
6.4. | Car Sales Forecast 2015-2042, Peak Car |
6.5. | Car Sales by Region Forecast 2015-2042 |
6.6. | Forecasting adoption of level 3 and level 4 technology |
6.7. | Car Sales Forecast by SAE Level, 2015-2042 |
6.8. | Car Sales Forecast by SAE Level, 2022-2042 |
6.9. | Forecasting Method and Assumptions |
6.10. | Radar Unit Sales by Application Forecast 2015-2042 |
6.11. | Radar Revenue by Application Forecast 2017-2042 |
6.12. | Radar Revenue by Region Forecast 2015-2042 |
6.13. | Radar Frequency Forecast 2015-2042 |
6.14. | Radar Semiconductor Forecast 2015-2042 |
6.15. | Transceiver Virtual Channel Forecast 2015-2042 |
6.16. | Radar Forecast by No. Virtual Channels 2015-2042 |
6.17. | Transceiver Demand for Radar Forecast Method |
6.18. | Transceiver Demand for Radar Forecast 2015-2042 |
6.19. | Materials for Radar Forecast Method |
6.20. | Materials for Radar Forecast 2015-2042 |