This report has been updated. Click here to view latest edition.
If you have previously purchased the archived report below then please use the download links on the right to download the files.
1. | EXECUTIVE SUMMARY |
1.1. | Report Introduction |
1.2. | Electric Car Forecasts (Unit Sales) |
1.3. | Power Electronics in Electric Vehicles |
1.4. | Power Electronics Device Ranges |
1.5. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
1.6. | 800V and SiC Benefits |
1.7. | Semiconductor Content Increased |
1.8. | SiC Supply Chain |
1.9. | Automotive Power Module Market Shares |
1.10. | SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales) |
1.11. | 800V - 1000V Inverter Forecast (2022-2032) |
1.12. | SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW) |
1.13. | Onboard Charger Forecast by Power Level 2022- 2032 |
1.14. | Inverter, OBC, LV Converter Forecast (GW) to 2032 |
1.15. | Automotive Power Electronics Market Size by Device ($ bn) |
1.16. | Automotive Power Electronics Market Size by Technology ($ bn) |
1.17. | Automotive: Key Application for Sintering |
1.18. | Power Electronics Trends Summary |
1.19. | The Transition to Silicon Carbide |
1.20. | Shrinking Die Sizes with SiC MOSFETs |
1.21. | Solders Reach Melting Point |
1.22. | Nano Particle Ag Sinter |
1.23. | Gamechanger? Threats to Ag - Cu Sintering pastes |
1.24. | Die-area Forecast in EV Power Electronics |
1.25. | Access to IDTechEx Portal Profiles |
2. | ELECTRIC CAR MARKETS |
2.1. | Industry Terms |
2.2. | Electric Vehicles: Typical Specs |
2.3. | The Global Electric Car Market |
2.4. | Plug-in Hybrids Doomed |
2.5. | Electric Vehicle Drivers |
2.6. | Electric Vehicle Barriers |
2.7. | Debunking EV Myths: Emissions Just Shift to Electricity Generation? |
2.8. | Debunking EV Myths: Emissions Just Shift to Electricity Generation? |
2.9. | Fossil Fuel Bans |
2.10. | Official or Legislated Fossil Fuel Bans |
2.11. | Unofficial, Drafted or Proposed Fossil Fuel Bans |
2.12. | Electric Car Forecasts (Unit Sales) |
3. | INTRODUCTION TO POWER ELECTRONICS |
3.1. | What is Power Electronics? |
3.2. | Power Electronics in Electric Vehicles |
3.3. | Inverters: Working Principle |
3.4. | Full Bridge & Half Bridge |
3.5. | Pulse Width Modulation |
3.6. | Passive Components |
3.7. | DC Link Capacitors |
3.8. | Traditional EV Inverter Package |
3.9. | Power Switch History |
3.10. | Transistor Basics |
3.11. | Wide bandgap Semiconductor Basics (1) |
3.12. | Wide-bandgap Semiconductor Basics (2) |
3.13. | Mitsubishi Electric SiC Device Advancement |
3.14. | Benchmarking Silicon, Silicon Carbide & Gallium Nitride |
3.15. | SiC MOSFETs Vs GaN HEMTs in EV (1) |
3.16. | SiC MOSFETs Vs GaN HEMTs in EV (2) |
3.17. | Automotive GaN Device Suppliers |
3.18. | Applications Summary for WBG Devices |
3.19. | Semiconductor Content Increased |
4. | AUTOMOTIVE INVERTERS |
4.1. | Traditional EV Inverter Package |
4.2. | Power Device Types |
4.3. | Electric Vehicle Inverter Benchmarking |
4.4. | Silicon Carbide Size Reductions to Inverter Package |
4.5. | SiC Impact on the Inverter Package |
4.6. | Rohm Silicon Carbide Inverters |
4.7. | The Transition to Silicon Carbide |
4.8. | SiC Inverter Experience Curve |
4.9. | Limitations of SiC Power Devices |
4.10. | SiC Power Roadmap |
5. | SUPPLY CHAIN |
5.1. | Automotive Power Module Market Shares |
5.2. | SiC Supply Chain |
5.3. | Power Module Supply Chain & Innovations |
5.4. | Value chain for SiC power modules |
5.5. | Infineon |
5.6. | Infineon Silicon Carbide Roadmap |
5.7. | Infineon's HybridPACK is used by Multiple Manufacturers |
5.8. | Hyundai E-GMP |
5.9. | Hyundai E-GMP 800V Inverter Suppliers |
5.10. | ROHM Semiconductor (1) |
5.11. | ROHM Semiconductor (2) |
5.12. | ROHM Semiconductor (3) |
5.13. | STMicroelectronics |
5.14. | Delphi Technologies (BorgWarner) |
5.15. | Cree Wolfspeed 650V MOSFET |
5.16. | Volvo Heavy Duty SiC Inverter |
5.17. | Other SiC Inverter Projects & Announcements |
5.18. | Ford and BorgWarner |
5.19. | Ford and Schaeffler |
5.20. | FCA (1) |
5.21. | FCA (2) |
5.22. | Lordstown Motors |
5.23. | General Motors |
5.24. | Chevy Bolt Power Module |
5.25. | Chevy Bolt Power Module (by LG Electronics / Infineon) |
5.26. | GM: Ultium Platform |
5.27. | Audi e-tron 2018 |
5.28. | Delphi, Cree, Oak Ridge National Laboratory and Volvo |
6. | PACKAGE MATERIALS & INNOVATIONS |
6.1. | Power Module Packaging Over the Generations |
6.2. | Traditional Power Module Packaging |
6.3. | Module Packaging Material Dimensions |
6.4. | Wirebonds |
6.5. | Al Wire Bonds: A Common Failure Point |
6.6. | Die and Substrate Attach are Common Failure Modes |
6.7. | Advanced Wirebonding Techniques |
6.8. | Direct Lead Bonding (Mitsubishi) |
6.9. | Tesla's SiC package |
6.10. | Tesla Inverter Cross-section |
6.11. | Evolution of Tesla's Power Electronics |
6.12. | Shrinking Die Sizes with SiC MOSFETs |
6.13. | Technology Evolution Beyond Al Wire Bonding |
6.14. | Baseplate, Heat Sink, Encapsulation Materials |
6.15. | Infineon |
6.16. | Continental / Jaguar Land Rover |
6.17. | Nissan Leaf Custom Design |
6.18. | The Choice of Solder / Die-attach Technology |
6.19. | Junction Temperature Increasing |
6.20. | Die Attach Technology Trends |
6.21. | Silver Sintered Pastes Emerging |
6.22. | Automotive: Key Application for Sintering |
6.23. | Solders Reach Melting Point |
6.24. | Challenges with Ag sintering |
6.25. | Nano Particle Ag Sinter |
6.26. | Simplifications to the Manufacturing Process |
6.27. | Heraeus Die top system with pre applied paste |
6.28. | Gamechanger? Embedding: Important Technology for Power Modules |
6.29. | Gamechanger? Threats to Ag - Cu Sintered Pastes |
6.30. | Cu Sinter Materials |
7. | SUBSTRATES |
7.1. | The Choice of Ceramic Substrate Technology |
7.2. | The Choice of Ceramic Substrate Technology |
7.3. | AlN: Overcoming its Mechanical Weakness |
8. | APPROACHES TO SUBSTRATE METALLISATION |
8.1. | Approaches to Metallisation: DPC, DBC, AMB and Thick Film Metallisation |
8.2. | Direct Plated Copper (DPC): Pros and Cons |
8.3. | Double Bonded Copper (DBC): Pros and Cons |
8.4. | Active Metal Brazing (AMB): Pros and Cons |
8.5. | Ceramics: CTE Mismatch |
8.6. | Multi-layered Printed Circuit Boards |
8.7. | Nissan Leaf Inverter PCB |
9. | POWER ELECTRONICS COOLING & THERMAL MANAGEMENT |
9.1. | Introduction to EV Thermal Management |
9.2. | Active vs Passive Cooling |
9.3. | Liquid Cooling |
9.4. | Refrigerant Cooling |
9.5. | Cooling Strategy Thermal Properties |
9.6. | Analysis of Cooling Methods |
9.7. | Power Electronics Cooling |
9.8. | Optimal Temperatures for Multiple Components |
9.9. | Why use TIM in Power Modules? |
9.10. | Why the Drive to Eliminate the TIM? |
9.11. | Thermal Grease: Other Shortcomings |
9.12. | Has TIM Been Eliminated in any EV Inverter Modules? |
9.13. | Double-sided Cooling |
9.14. | Tesla Model 3 2018 Liquid Cooling |
9.15. | Nissan Leaf Liquid Cooling |
9.16. | Jaguar I-PACE 2019 (Continental) Liquid Cooling |
10. | POWER MODULES 2004-2016 |
10.1. | Toyota Prius 2004-2010 |
10.2. | BWM i3 (by Infineon) |
10.3. | 2008 Lexus |
10.4. | Toyota Prius 2010-2015 |
10.5. | Nissan Leaf 2012 |
10.6. | Renault Zoe 2013 (Continental) |
10.7. | Honda Accord 2014 |
10.8. | Honda Fit (by Mitsubishi) |
10.9. | Toyota Prius 2016 onwards |
10.10. | Chevrolet Volt 2016 (by Delphi) |
10.11. | Cadillac 2016 (by Hitachi) |
10.12. | Manufacturing Process |
11. | ONBOARD CHARGERS |
11.1. | Onboard Charger Basics |
11.2. | Onboard Charger Circuits |
11.3. | Tesla Onboard Charger / DC DC converter |
11.4. | Tesla SiC OBC |
11.5. | Onboard Charger Forecast by Power Level 2022- 2032 |
12. | 800-1000V CARS |
12.1. | Historic BEV Sales by Voltage Level |
12.2. | 800V Platform Announcements |
12.3. | Why move to 800+ V? |
12.4. | Is all 800V SiC? Audi e-tron 2018 and Porsche Taycan? |
12.5. | Is 350kW Needed? |
12.6. | Slow AC Chargers Dominate |
12.7. | Moving to 800V Requires Deep System Changes |
12.8. | Fast Charging at Different Scales |
12.9. | Why can't you just fast charge Li-ion? |
12.10. | Rate limiting factors at the material level |
12.11. | Fast charge design hierarchy - levers to pull |
12.12. | Porsche Taycan & Tesla Fast Charge Comparison |
12.13. | 800V - 1000V Inverter Forecast (2022 - 2032) |
12.14. | Conclusions |
13. | FORECASTS |
13.1. | On-road Electric Vehicle Forecasts (Vehicles) |
13.2. | Inverters per Car Forecast |
13.3. | Multiple Motors / Inverters per Vehicle |
13.4. | SiC MOSFET & Si IGBT Inverter Forecast by Voltage & Semiconductor Technology 2022 - 2032 (Unit Sales) |
13.5. | 800V - 1000V Inverter Forecast (2022 - 2032) |
13.6. | SiC MOSFET & Si IGBT Automotive Power Electronics Forecast (GW) |
13.7. | Onboard Charger Forecast by Power Level 2022- 2032 |
13.8. | Inverter, OBC, LV Converter Forecast (GW) to 2032 |
13.9. | Automotive Power Electronics Market Size by Device ($ bn) |
13.10. | Automotive Power Electronics Market Size by Technology ($ bn) |
13.11. | Die-area Forecast in EV Power Electronics |
13.12. | Die Area Forecasts for SiC MOSFET, Si IGBT, Inverter, OBC, DC DC Converter (m2) |
13.13. | Methodology |
13.14. | Inverter, OBC & Converter Cost Assumption ($ per kW) |
スライド | 216 |
---|---|
フォーキャスト | 2032 |
ISBN | 9781913899691 |