Printed, Flexible and Organic Electronics Report

의료분야의 인쇄 전자장치 시장 규모는 2030년까지 83억 달러를 초과할 것이다

의료분야의 플렉서블 일렉트로닉스 (2020-2030년)

의료분야의 전자 스킨 패치, 전자섬유, 테스트 스트립 및 스마트 패키징을 위한 인쇄 전자 및 플렉서블 일렉트로닉스

모두 보기설명목차, 표 및 그림 목록가격 Related Content
이 보고서는 전자 스킨 패치, 전자섬유, 전기화학적 테스트 스트립 및 스마트 밴드를 포함하여, 의료 분야에서의 플렉서블 일렉트로닉스의 최신 응용분야를 다룬다. 디지털 건강 운동에 의해 활성화된 의료 시스템의 분산화가 증가함에 따라, 플렉서블 일렉트로닉스는 편안하고 장기적인 원격 환자 모니터링 솔루션을 제공할 수 있는 위치에 있다. 플렉서블 일렉트로닉스는 건강 모니터링에서 새로운 형태 요인과 신제품을 가능하게 할 것이며, 2030년에는 83억 달러가 넘는 중요한 시장이 될 것이다.
Traditional electronic systems have an inherently rigid form factor. Developing flexibility and related properties such as stretchability into these systems enables electronics to be added in a wider range of applications and products where flexibility is essential. Using technologies such as printed electronics, new form factors and new products can be developed.
Electronics meets healthcare
There is a general market trend across all of healthcare towards increasing digitization. Digital health solutions such as telehealth, telemedicine and its subset, remote patient monitoring, bring much needed decentralization (keeping patients out of hospitals) while still maintaining close contact with patients. Moving from discrete monitoring at each doctor's visit to continuous monitoring via connected medical devices such as wearables can provide improved diagnostic capability and the opportunity to deliver preventative care. Overall, the solution that digital health brings to traditional healthcare is decreased costs while still maintaining a high level of care.
Traditionally, patient compliance to medical interventions is low, as is the long-term use of wearable devices in general. Remote patient monitoring requires a high level of adherence by the patient, so options where the tests can happen automatically as the patient goes about their normal life are preferable. Ideas such as "fit and forget" or "always-on monitoring" are favorable within this scenario. Devices which are fitted by a doctor and stay in place, or part of a person's daily life, can be options to achieve this. These devices need to interface with the body, be safe and comfortable in long term wear, and not cause the patient any unnecessary burden in order to maximize compliance.
Flexible (& printed) electronics as a principle fits very well with these themes, providing flexible, foldable, stretchable, conformal, lightweight options for key device components. This synergy and narrative works best with products such as skin patches, smart clothing and other remote patient monitoring or treatment devices that interface with the skin or other tissues.
Examples of flexible electronics in healthcare covered within this report.
Electronic skin patches
Electronic skin patches are wearable devices with electronic components that are attached to the skin. While skin patches may come in the form of rigid electronics mounted on an adhesive patch, increased flexibility of the electronics offers a clear advantage to achieving "fit and forget" goals. This report draws on IDTechEx's expertise in electronic skin patches – we have examined over 100 companies in 26 application areas to bring you the most promising opportunities in healthcare for flexible electronics applied to the skin patch form factor. Areas covered in this report include cardiovascular monitoring, remote patient monitoring (both in- and out-patient), diabetes management, temperature sensing, and motion sensing.
Smart clothing (using e-textiles)
E-textiles are products that involve both electronic and textile components. Humans are in contact with textiles for 98% of our lives, and thus textiles (clothing, bedsheets, etc.) can be an excellent interface from which sensors and other electronic components can interact with the body. As such, biometric monitoring through textiles presents a significant opportunity in achieving always-on monitoring. IDTechEx have been researched e-textiles for over a decade and have followed the market's shift in focus from sports to healthcare. E-textiles can be a highly convenient and comfortable solution to patient monitoring, though technical and regulatory challenges remain.
In vitro diagnostics (electrochemical test strips)
There is a trend to decentralize healthcare, and IDTechEx have been following the movement of diagnostics from centralized laboratories to the point-of-care. In this area, the glucose test strip is one of the greatest successes of printed electronics in enabling low-cost manufacturing. Here, flexibility is a byproduct of the manufacturing method. Though the test strip market is in decline due to the emergence of technologies for continuous monitoring, it still presents as a billion-dollar market.
Smart packaging
One of the prominent applications discussed for printed and flexible electronics has been in smart packaging and logistics, an area that IDTechEx has covered for the past 8 years. Despite the value that smart packaging brings to supply chain management, there has been limited application in healthcare. When applied to blister packs, flexible electronics can be used to track a patient's adherence to their medication, though issues around risk and infrastructure remain.
In addition to the breakdown by product category, this report also examines the technologies that are enabling flexible electronics in healthcare, based on over 15 years of IDTechEx expertise in printed and flexible electronics. Areas of focus include:
  • Flexible substrates
  • Conductive inks
  • Flexible circuit boards
  • Flexible sensors
  • Components in e-textiles
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.Why Might Electronic Products in Healthcare Need to be Flexible?
1.2.Broader Successes When Competing on More Than Cost
1.3.Healthcare Spending is Rising Around the World
1.4.Remote Care of Patients is on the Rise
1.5.The Outlook for Remote Patient Monitoring - a Key Market for Printed Electronics in Healthcare
1.6.Electronic Skin Patches
1.8.Electrochemical Test Strips
1.9.Smart Packaging
1.10.Stretchable Electronics: Where is the Money So Far?
1.11.Change in Form Factor Supported by Flexible Sensors
1.12.Market Forecast: Flexible Electronics in Healthcare
2.1.1.Report Scope
2.1.2.Why Might Electronic Products in Healthcare Need to be Flexible?
2.1.3.What is Printed, Flexible, Organic Electronics?
2.1.4.Cost Reduction Has Been Commercially Successful
2.1.5.Broader Successes When Competing on More Than Cost
2.1.6.Creating New Markets
2.1.7.Change in Form Factor Supported by Flexible Sensors
2.1.8.Printed and Flexible Electronics Applied to Healthcare Products
2.1.9.Examples of Flexible Electronics in Healthcare
2.2.Trends in Healthcare Supporting Flexible Electronics
2.2.1.Healthcare Spending is Rising Around the World
2.2.2.Mobile Health is Becoming the Norm
2.2.3.Consumer-Driven, Patient Centered Healthcare
2.2.4.Remote Care of Patients is on the Rise
2.2.5.From Connected to Wearable
2.2.6.Skin Patches are Emerging as a Key Form Factor
2.2.7.Medical Adherence is a Billion-Dollar Opportunity
2.2.8.The Outlook for Remote Patient Monitoring - a Key Market for Printed Electronics in Healthcare
3.1.Methodology and Assumptions
3.2.Market Forecast: Flexible Electronics in Healthcare
3.3.Market Forecast: Flexible Electronics in Skin Patches for Healthcare Applications
3.4.Market Forecast: Flexible Electronics in E-Textiles for Healthcare Applications
3.5.Market Forecast: Flexible Electronics in Other Product Types for Healthcare Applications
4.1.Electronic Skin Patches
4.1.1.Definitions and Exclusions
4.1.2.Electronic Skin Patches
4.1.3.The Case for Skin Patches: Improving Device Form Factor
4.1.4.Application Overview
4.1.5.Skin Patches Competing with Established Products
4.1.6.New Market Creation Around Skin Patches
4.1.7.Ambulatory Cardiac Monitoring
4.1.8.Economic and Healthcare Costs of Cardiovascular Disease
4.1.9.Cardiovascular Monitoring Via Wearable Devices
4.1.10.Towards Ambulatory Cardiac Monitoring
4.1.11.Differentiation Between Ambulatory Cardiac Monitors
4.1.12.Wearable vs Implantable Monitoring
4.1.13.Wearable, Ambulatory Cardiac Monitoring: Comparison of Over 35 Players
4.1.14.Printed Electronics in Cardiac Skin Patches
4.1.15.Cardiac Skin Patch Types: Traditional Holter Monitor / Other Wired Options
4.1.16.Cardiac Skin Patch Types: Cordless Patch with Snap Fasteners
4.1.17.Cardiac Skin Patch Types: Flexible Patch with Integrated Electrodes
4.1.18.Conclusions: Cardiac Monitoring Skin Patches
4.1.19.iRhythm: ZIO
4.1.20.Byteflies & Quad Industries
4.1.21.DMS Service
4.1.22.QT Medical
4.1.23.Conclusions: Cardiac Monitoring Skin Patches Market
4.1.24.Inpatient Monitoring
4.1.25.Inpatient Monitoring: The Case for Removing the Wires
4.1.26.Skin Patches for Inpatient Monitoring
4.1.27.Sensium (Surgical Company Group)
4.1.29.Isansys Lifecare
4.1.30.Leaf Healthcare
4.1.31.Moving Outside the Hospital
4.1.34.Conclusions & Related Areas
4.1.35.Conclusions - Patient monitoring
4.1.36.Diabetes Management
4.1.37.The Cost of Diabetes
4.1.38.Diabetes Management Process
4.1.39.Diabetes Management Device Roadmap: Glucose Sensors
4.1.40.Skin Patches for Diabetes Management
4.1.41.CGM: Overview of key players
4.1.42.Abbott: FreeStyle Libre
4.1.45.Diabetes Management Device Roadmap: Insulin Delivery
4.1.46.Insulin Pumps: Introduction
4.1.47.Insulin Pumps Currently Available
4.1.48.Insulin Patch Pumps
4.1.49.Today: Hybrid Closed Loop Systems
4.1.50.The Future: Closing the Feedback Loop
4.1.51.Conclusions - Diabetes Management
4.1.53.Approaches and Standards for Medical Temperature Sensing
4.1.54.Skin Patches for Temperature Sensing
4.1.55.Skin Patch Temperature Sensing: Use Cases Across 12 Case Studies
4.1.57.Blue Spark
4.1.58.Life Science Technology
4.1.59.Isansys Lifecare
4.1.60.Conclusions: Temperature Sensing
4.1.63.Applications for Skin Patch Motion Sensors
4.1.64.Case Study - Concussion Detection
4.1.65.X2 Biosystems
4.1.66.US Military Head Trauma Patch / PARC
4.1.68.Conclusions: Motion sensing
4.2.2.E-textiles: Where Textiles Meet Electronics
4.2.3.Commercial Progress with E-textile Projects
4.2.4.Types of Revenue
4.2.5.Smart Clothing for Sports Used to be the Major Focus
4.2.6.Medical & Healthcare
4.2.7.Wound Care with E-textiles
4.2.8.Urinary Incontinence
4.2.9.Example: LifeSense Group
4.2.10.Beyond Apparel
4.2.11.Patient Monitoring Using E-textiles
4.2.12.Bedsore / Pressure Ulcer Prevention
4.2.13.Example: Sensing Tex
4.2.14.Side-effect Management for Diabetes
4.2.16.Measuring Gait
4.2.17.Industry Challenges for E-textiles
4.2.18.Case Study: Biometric Monitoring in Apparel
4.2.19.Integrating HRM into Clothing
4.2.20.Companies with Biometric Monitoring Apparel Products
4.2.21.Sensors Used in Smart Clothing for Biometrics
4.2.22.Example: ChronoLife
4.2.23.Example: Hexoskin
4.2.24.Example: Myant
4.2.25.Example: Xenoma
4.3.Test strips and In-Vitro Diagnostics
4.3.1.Flexible Electronics in In-vitro Diagnostics
4.3.2.Diabetes Management Device Roadmap: Glucose Sensors
4.3.3.Anatomy of a Test Strip
4.3.4.Manufacturing steps of Lifescan Ultra
4.3.5.Profitability in the Test Strip Industry is Falling
4.3.6.Strategy comparison amongst the largest players
4.3.7.Electrochemical test strips: cholesterol detection
4.3.8.Cholesterol electrochemical test strips - Key players
4.3.9.Other electrochemical test strips for CVD
4.3.10.Conclusions: IVD & Test Strips
4.4.Smart Packaging
4.4.1.Introduction: Smart packaging & logistics in healthcare
4.4.2.Sensors in Smart Packaging - What problems are we fixing?
4.4.3.RFID Sensors: main choices
4.4.4.Examples of Battery Assisted Passive (BAP) RFID sensors
4.4.5.Three main markets in the data logger business today
4.4.6.Conclusions: Smart packaging as an application for flexible electronics in healthcare
4.4.7.Case Study: Medication Compliance
4.4.8.The Problem: Medication Non-Compliance - Statistics
4.4.9.The current solution
4.4.10.The printed electronics / RFID solutions
4.4.11.Trial scenarios with smart blister packs
4.4.12.Smart blister packs - not a big success yet
4.4.13.Things are changing & more players enter
5.1.1.Stretchable Electronics: Where is the Money So Far?
5.1.2.Design Trends to Accommodate Stretchable Electronics
5.2.Stretchable Substrates
5.2.1.Characterising a Stretchable Substrate
5.2.2.Substrate Choice for Stretchable Electronics
5.2.3.Key Parameters for Plastic Substrates
5.2.4.Flexible Glass
5.3.Conductive Inks
5.3.1.Conductive Inks
5.3.2.Stretchable Conductive Ink Suppliers Multiply
5.3.3.The Role of Particle Size and Resin in Stretchable Inks
5.3.4.Washability for Stretchable Conductive Inks
5.3.5.Encapsulation Choice for Stretchable Inks
5.3.6.The Role of the Encapsulant in Supressing Resistivity Changes
5.3.7.Graphene-based Stretchable Conductive Inks
5.4.Flexible Circuits
5.4.1.Stretchable or Extremely Flexible Circuit Boards
5.4.2.Examples of Thin and Flexible PCBs in Wearable and Display Applications
5.4.3.Stretchable Meandering Interconnects
5.4.4.Stretchable Printed Circuits Boards
5.4.5.Examples of Circuits on Stretchable PCBs
5.4.6.The Role of Pattern Design in Stretchable Conductive Inks
5.4.7.Stretchable Printed Electronic Circuits/Systems
5.4.8.Circuits Printed with Conductive Inks
5.5.Printed and Flexible Sensors
5.5.1.Sensors: Key Trends
5.5.2.Main Benefits of Flexible and Printed Sensors
5.5.3.Types of Sensors that can be Printed
5.5.4.Sensors: Technology Readiness
5.5.6.Introduction - Measuring biopotential
5.5.7.Technology Overview - The Circuitry for Measuring Biopotential
5.5.8.Textile Electrodes
5.5.9.Technology Overview - Electrode Properties
5.5.10.Temperature Sensors
5.5.11.Printed Temperature Sensors
5.5.12.Printed Thermistors Enable New Designs
5.5.13.Temperature Sensing Technology Options
5.5.15.Anatomy of a test strip: one example
5.5.16.Manufacturing Steps Of Lifescan Ultra
5.5.17.Inks for Biosensors
5.5.18.Force / Pressure Sensors
5.5.19.Technology Overview - Resistive/Piezoresistive Sensing
5.5.20.Force Sensing Resistors
5.5.22.Printed Piezoresistive Sensor
5.5.23.Technology Overview - Piezoelectric Sensing
5.5.24.Technology Overview - Capacitive Sensing
5.5.26.Moisture Sensors
5.6.1.Electronic Textiles (E-Textiles)
5.6.2.Strategies for Creating Textile-integrated Electronics
5.6.3.Challenges When Moving into the E-textiles Space
5.6.4.Materials and Components
5.6.5.Fibres & Yarns
5.6.6.Examples of Traditional Conductive Fibres
5.6.7.Hybrid Yarns can be Conductive, Elastic and Comfortable
5.6.8.Electronic Components Integrated into Yarns
5.6.9.Textiles and Fabrics
5.6.10.Stretchable Electronic Fabrics
5.6.11.Connectors for E-textiles
5.6.12.Textile Cabling
5.6.13.Metal Wiring Integrated into Textiles
5.6.14.Inks and Encapsulation
5.6.15.Novel Approaches to Conductive Textiles: CNT & Graphene
5.6.16.Challenges with Conductive Inks in E-textiles
5.6.17.Conductive Polymers
5.6.18.Carbon Rubbers as Electrodes in Compression Garments
5.6.19.E-textile Material Use Today
5.6.20.Example suppliers for each material type

Ordering Information

의료분야의 플렉서블 일렉트로닉스 (2020-2030년)

전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方は までご連絡ください。

Subscription Enquiry