자가전력 스마트 도시 (2018-2028년): IDTechEx

2040년까지 오프그리드(에너지 독립형)으로 생성된 전기가 국가 차원의 녹색 전기를 초과할 것이다

자가전력 스마트 도시 (2018-2028년)

도시 도로, 창문, 건물, 장벽, 바람, 물, BIPV에서 전기를 생산

모두 보기 설명 목차, 표 및 그림 목록 가격 Related Content
도시들은 오염된 예비 전기에서 벗어나 고가의 안전하지 않은 국가적 망을 예비전력만으로 사용하는 것으로, 그리고 더 나아가 전기 태양, 바람 및 물을 사용하여 에너지 독립을 달성하는 것으로 향하고 있다. 10MW 태양광 주차장 및 충전기, 태양광 창문 및 도로, 도로 및 경로 이동 변환, 공중풍력에너지(AWE) 등을 포함하여 2050년까지 전체적인 전망을 알아볼 수 있다. 모두 박사수준의 분석가들에 의해, 명쾌한 새로운 정보 그램, 로드맵 및 예상으로 평가, 비교, 전망되었다.
The IDTechEx report, "Self-Powering Smart Cities 2018-2028" has a host of infograms, forecasts, roadmaps and technology comparisons embracing activities of no less than 241 organisations. It is intended for distributed energy technology developers and users, property, road and campus developers, electricity utilities, urban planners, legislators and architects. Learn how we have entered a golden age where beautiful and sometimes invisible Building Integrated Photovoltaics BIPV is a practicality rather than an expensive dream. A host of new technologies are assessed in depth, some invisibly retrofittable like photovoltaic window coating and glass that powers its own electrically-operated darkening for privacy and climate control. This hugely increases the addressable markets. We show how this can be on a national grid, using the grid merely as back up or fully off grid.
The report starts with a comprehensive Executive Summary and Conclusions, sufficient in itself for those in a hurry as it explains definitions, microgrids to megagrids, good and bad practice, technology preferences and futures with 12 pages of detailed forecasts at the end. After the introduction chapter putting it all in context, there are chapters on urban wind energy including a full appraisal of Airborne Wind Energy to be first commercialised in 2018, urban photovoltaics including how we shall achieve transparency and doubling efficiency, Building Integrated Photovoltaics BIPV in action then a chapter on self-powered multifunctional windows and glass. The seventh chapter appraises electricity generating roads, paths, fences and road furniture and the report closes with a good look at urban blue energy from river and sea: most cities are on one or the other. The emphasis is in on commercialisation and emerging options with real depth. Indeed, it is the first to give a 20 year roadmap of the whole picture, importantly embracing more than the buildings, because, for example, solar paths, fences, road furniture (bus and vehicle charging shelters, signage, lamp posts) and roads together can be the dominant part of the electricity generating package. Learn of a 10MW car park working today.
The emphasis is analytical not evangelical. It exposes bad practice as well as good and benchmarks practice in other industries that should be transferred. We assess the many new forms of photovoltaics from that three times as efficient to flexible and/or transparent PV technologies for windows. Learn complementary technologies coming along. For example, a solar road can also capture movement using piezoelectrics and vertical wind turbines down the centre of a road can harness wind from traffic. We throw in some dreams as well because this is a subject where dreams today become practicality tomorrow. Do you want to help emerging nations to prosper without pollution? Do you desire freedom from national grid problems from terrorism, natural disasters, monopoly pricing and neglect? These and other questions are answered from the point of view of what buildings and their immediate environs can contribute electrically. Overall the major trends are identified as being off grid and integration.
Only the report, "Self-Powering Smart Cities 2018-2028" critically covers the whole urban electricity generation picture focussing only on zero emission and looking forward all the way to 2050. It is a very exciting story, assessed and predicted by the many multi-lingual, PhD level analysts at IDTechEx who travel the world on your behalf. Our approach is creative, based on our industrial and academic background in this subject and best energy harvesting practice in other industries that can be transferred to urban infrastructure. The emphasis is what is emerging, its commercialisation and market drivers. The report is complementary to our energy harvesting, off-grid and other reports.
IDTechEx의 분석가 액세스
모든 보고서 구입에는 전문가 분석가와의 최대 30분의 전화통화 시간이 포함되어, 보고서의 주요 결과를 귀하가 제시하는 비즈니스 문제에 연결하도록 돕습니다. 이 전화통화는 보고서를 구매한 후 3개월 이내에 사용해야합니다.
추가 정보
이 보고서에 대해 궁금한 점이 있으시면 언제든지 research@IDTechEx.com으로 보고서 팀에 문의하거나, 영업 관리자에게 문의하십시오

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.1.Why make electricity from urban infrastructure?
1.2.Purpose of this report
1.3.Some of the urban locations that will generate their own zero emission electricity
1.4.Off-grid structural types
1.5.Off grid leading technologies
1.6.Microgrids, single mode and minigrids with multi-mode harvesting
1.7.Building integrated photovoltaics BIPV: vitally important
1.8.BIPV impediments and very positive future
1.9.Incompetent urban ZE generation in buildings
1.10.Electricity generation from other urban infrastructure
1.10.1.Outdoor lighting
1.10.2.Solar roads, paths and barriers
1.11.PV as integrated power for other functions
1.12.Continuity as important as cost: energy storage vs energy harvesting for continuity
1.13.Market forecasts
1.13.1.Megacity growth 2011-2025
1.13.2.Megacity population by territory 2016
1.13.3.Which renewables, mainly zero emission, take over grid and off grid generation 2012-2040
1.13.4.World net electricity generation from renewable power by fuel 2012-2040 trillion kWh
1.13.5.Off grid renewable energy installed capacity GW and kW each in 2050
1.13.6.Retrofit building PV, opaque and transparent BIPV 2017-2028 $billion global
1.13.7.View of BIPV commercial, residential, industrial
1.13.8.Market for Wind + solar + small battery
1.13.9.Organic PV projection
1.13.10.Off-grid solar forecast
1.13.11.Installed capacity 2018-2050 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
1.14.Urban zero emission electricity generation technology and adoption roadmap
1.15.Urban zero emission electricity generation technology and adoption roadmap 2018-2050: storage
2.1.Electrification alone will save 42% of world power demand
2.3.Access to electricity by people in 2018: conflicting forces
2.4.Electricity supply trends 2018 and 2050
2.5.Installed global capacity 2028 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
2.6.Much is changing
2.7.More reasons to worry about national grids now
2.8.On-grid vs off grid by country
2.9.Trends driving need for PV glass
2.10.Trend in the use of smart glass in the built environment?
2.11.Bridging solar technologies: DeGrussa Australia
2.12.Low cost, energy-saving radiative cooling system ready for real-world applications
3.1.Height and good siting are paramount
3.2.Ground turbine wind power does not downsize well: physics and poorer wind
3.3.Max Bögl Wind AG
3.4.Turbine choices
3.5.Options for tapping excellent 200+m wind: particularly strong at night when PV is off
3.6.Small turbines
3.7.Airborne Wind Energy options: trend cloth kite>fixed wing>drone
3.7.1.Mainly a European thing....
3.7.2.AWE dream and reality
3.7.3.Some of the risks and misleading claims identified
3.7.4.Primary conclusions: AWE technologies
4.1.Benefits sought
4.2.Thin concrete solar; ETH Zurich
4.3.Best Research-Cell Efficiencies
4.4.Basic configurations
4.5.Many competing technologies in PV
4.6.Latest technologies: production readiness
4.6.1.Conformability helps on buildings: SunMan
4.7.Inorganic PV: dominant now, promising future
4.7.1.Si, CdTe, perovskite, GaAs-Ge, in BIPV
4.7.2.Here comes GaAs thin film PV: Hanergy EIV cars have lessons for BIPV
4.7.3.Quantum dot technologies Quantum dot vs perovskite
4.7.5.Magnolia Solar Corporation
4.7.6.Quantum dot TLSC: Los Alamos
4.7.7.QD Solar
4.8.Transparent and translucent PV
4.8.1.Kolon Industries
4.8.4.SolarWindow Technologies
4.8.5.Tohoku University
4.8.6.Swiss Federal Institute for Materials Science and Technology
4.9.Transparent Luminescent and Other Solar Concentrators
4.9.1.Michigan State University
4.9.2.University of Exeter's Solar Squared Solar Cells
4.9.3.Universities of Minnesota and Milano Bicocca
4.9.4.Washington Universities Luminescent Solar Concentrator (LSC) Technology Panels
4.9.5.Light-guiding solar concentrators: ITRI Taiwan
4.9.6.Light guide solar optic: Morgan Solar Canada
5.2.Car parks and electric vehicle charging shelters
5.2.1.Saudi Aramco
5.2.2.Envision Solar Malta portable solar chargers
5.3.PV windows for buildings: Prism Solar, DSM, Topray, Sunshine Solar
5.4.Smartflex solar facades Via Solis
5.5.Pythagoras Solar
5.6.Taiyo Kogyo
6.1.Self powered architectural features
6.2.Summary of phenomena behind smart glass technologies, materials and manufacturers
6.3.Choices of capability of electrically active glass
6.4.Characteristics of electronic darkening options
6.5.PV with optically active window darkening: Princeton University
6.6.SPD technology and others
6.7.Window retrofit becomes possible: Argo
6.8.Research Frontiers Inc
6.9.Transparent OLED lighting self powered?
7.1.Solar roads and paths
7.1.1.TNO Solaroad
7.2.Heavy duty in prospect
7.2.2.Solar Roadways: paths then roads
7.3.Electricity generating roads, paths: PV, piezo or ED?
7.3.1.Google and Pavegen: electrodynamic ED paths
7.3.2.Lancaster University UK
7.3.3.University of California, Merced: Piezo roads
7.3.4.GeorgiaTech piezo surfaces
7.3.5.Electricity from heat of roads, parking lots etc
7.4.Highway barriers: Eindhoven University of Technology
8.1.Dexawave, Noel Gaci, Euromed Malta wave power
8.2.Marine Power Systems wave power
8.3.REAC Energy ocean current

Ordering Information

자가전력 스마트 도시 (2018-2028년)

전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
전자 (사용자 1-5명)
전자 (사용자 6-10명)
전자 및 1 하드 카피 (사용자 1-5명)
전자 및 1 하드 카피 (사용자 6-10명)
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

보고서 통계

슬라이드 166

콘텐츠 미리보기

pdf Document Sample pages

Subscription Enquiry