1. | EXECUTIVE SUMMARY |
1.1. | Introduction to Thermal Interface Materials (TIM) |
1.2. | Properties of Thermal Interface Materials |
1.3. | Thermal Conductivity Comparison of TIM Formats |
1.4. | TIM Utilizing Advanced Carbon Materials |
1.5. | Commercial Benchmark for EV Battery TIMs |
1.6. | TIM for EV Battery Packs: Forecast by Vehicle Segment |
1.7. | TIM Forecast for Data Centers |
1.8. | TIM Forecast for 4G/LTE Base Stations |
1.9. | 5G Station Deployment Forecast |
1.10. | TIM Forecast for 5G Stations |
1.11. | Trends in Smartphone Thermal Material Utilization |
1.12. | Thermal Material Forecast for Consumer Electronics |
1.13. | TIM Forecast Totals: Area |
1.14. | TIM Forecast Totals: Tonnage |
1.15. | Company Profiles |
2. | OVERVIEW OF THERMAL INTERFACE MATERIALS |
2.1. | Introduction |
2.1.1. | Introduction to Thermal Interface Materials (TIM) |
2.1.2. | Key Factors in System Level Performance |
2.1.3. | Thermal Conductivity vs Thermal Resistance |
2.1.4. | Bill of Materials and the Importance of Longevity |
2.2. | TIM Form and Material Overview |
2.2.1. | TIM Considerations |
2.2.2. | Thermal Interface Material by Physical Form |
2.2.3. | Assessment and Considerations of Liquid Products |
2.2.4. | Eight Types of Thermal Interface Material |
2.2.5. | Properties of Thermal Interface Materials |
2.2.6. | 1. Gap Pads |
2.2.7. | Advantages and Disadvantages of Elastomeric Pads |
2.2.8. | Thermal Conductivity of Commercial TIM Pads |
2.2.9. | 2. Thermal Gels/ Gap Fillers |
2.2.10. | Comparison of Thermal Gels with Greases |
2.2.11. | Gels vs Potting |
2.2.12. | Thermal Conductivity of Commercial Gels and Pastes |
2.2.13. | 3. Thermal Greases |
2.2.14. | Problems with Thermal Greases |
2.2.15. | Thermal Greases |
2.2.16. | Viscosity of Thermal Greases |
2.2.17. | Thermal Conductivity of Greases |
2.2.18. | Technical Data on Thermal Greases |
2.2.19. | The Effect of Filler and Loading on Thermal Conductivity |
2.2.20. | 4. Phase Change Materials (PCMs) |
2.2.21. | Phase Change Materials (PCMs) |
2.2.22. | PCM Categories and Pros and Cons |
2.2.23. | Phase Change Materials - Overview |
2.2.24. | Operating Temperature Range of Commercial PCMs |
2.2.25. | 5. Adhesive Tapes |
2.2.26. | Thermal Conductivity of Commercial Tapes |
2.2.27. | 6. Potting/ Encapsulants |
2.2.28. | Thermal Conductivity of Commercial Encapsulants |
2.2.29. | 7. Liquid Metals |
2.2.30. | PC Enthusiasts |
2.2.31. | LM TIM: Sony PS5 and ASUS |
2.2.32. | LM TIM: Players |
2.2.33. | Thermal Bridge - a New Approach |
2.2.34. | Thin film evaporation for microelectronics |
2.2.35. | 8. Solders and Electrically Conducive Adhesives |
2.2.36. | Types of Joining Materials |
2.2.37. | Structure of Electrically Conductive Adhesives |
2.2.38. | SWOT Analysis of ECAs Compared to Solders |
2.2.39. | Common Material Choices for ECAs |
2.2.40. | Thermal Conductivity Comparison of TIM Formats |
2.2.41. | Property Comparison of TIM Formats |
2.3. | Advanced Materials |
2.3.1. | Advanced Materials for TIM: Introduction |
2.3.2. | Achieving Through-plane Alignment |
2.3.3. | Summary of TIM Utilizing Advanced Carbon Materials |
2.3.4. | Thermal Conductivity Comparison of TIMs |
2.3.5. | TIM Combined with EMI Shielding Properties |
2.3.6. | Graphite |
2.3.7. | Graphite Overview |
2.3.8. | Graphite Sheets: Through-plane Limitations |
2.3.9. | Graphite Sheets: Interfacing with Heat Source and Disrupting Alignment |
2.3.10. | Panasonic: Pyrolytic Graphite Sheet (PGS) |
2.3.11. | Progressions in Vertical Graphite |
2.3.12. | Vertical Graphite with Additives |
2.3.13. | Graphite Pastes |
2.3.14. | Thermal Conductivity Comparison of Graphite TIMs |
2.3.15. | Carbon Fiber |
2.3.16. | Carbon Fiber as a TIM: Introduction |
2.3.17. | Carbon Fiber as a TIM in Smartphones |
2.3.18. | Magnetic Alignment of Carbon Fiber TIMs |
2.3.19. | Other Routes to CF Alignment in a TIM |
2.3.20. | Carbon Fiber with Other Conductive Additives |
2.3.21. | Carbon Nanotubes (CNT) |
2.3.22. | Introduction to Carbon Nanotubes (CNT) |
2.3.23. | Challenges with VACNT as TIM |
2.3.24. | Transferring VACNT Arrays |
2.3.25. | Notable CNT TIM Examples from Commercial Players: Carbice |
2.3.26. | Notable CNT TIM Examples from Commercial Players: Fujitsu |
2.3.27. | Notable CNT TIM Examples from Commercial Players: Zeon |
2.3.28. | Notable CNT TIM Examples from Commercial Players: Hitachi Zosen |
2.3.29. | Graphene |
2.3.30. | Graphene in Thermal Management: Application Roadmap |
2.3.31. | Graphene Heat Spreaders: Commercial Success |
2.3.32. | Graphene Heat Spreaders: Performance |
2.3.33. | Graphene Heat Spreaders: Suppliers Multiply |
2.3.34. | Graphene as a Thermal Paste Additive |
2.3.35. | Graphene as an Additive to Thermal Interface Pads |
2.3.36. | Ceramic Advancements |
2.3.37. | Ceramic Trends: Spherical Variants |
2.3.38. | Denka: Functional Fine Particles for Thermal Management |
2.3.39. | Denka |
2.3.40. | Showa Denko: Transition from Flake to Spherical Type Filler |
2.3.41. | Boron Nitride Nanostructures |
2.3.42. | Introduction to Nano Boron Nitride |
2.3.43. | BNNT Players and Prices |
2.3.44. | BNNT Property Variations |
2.3.45. | BN Nanostructures in TIMs |
3. | TIM DISPENSING EQUIPMENT |
3.1. | Dispensing TIMs Introduction |
3.2. | Challenges for Dispensing TIM |
3.3. | Low-volume Dispensing Methods |
3.4. | High-volume Dispensing Methods |
3.5. | Compatibility of Meter, Mix, Dispense (MMD) System |
3.6. | TIM Dispensing Equipment Suppliers |
4. | MAJOR TIM COMPANY ACQUISITIONS |
4.1. | Henkel Acquires Bergquist |
4.2. | Parker Acquires Lord |
4.3. | DuPont Acquires Laird |
5. | AVOIDING THE USE OF TIMS |
5.1. | Eliminating the TIM |
5.2. | Why the Drive to Eliminate the TIM? |
5.3. | Has TIM Been Eliminated in any EV Inverter Modules? |
6. | TIM FOR EV BATTERY PACKS |
6.1. | Introduction to Thermal Management for EVs |
6.2. | Battery Thermal Management - Hot and Cold |
6.3. | Active vs Passive Cooling |
6.4. | Analysis of Battery Cooling Methods |
6.5. | Emerging Routes - Immersion cooling |
6.6. | Emerging Routes - Phase Change Materials |
6.7. | Global Trends in OEM Cooling Methodologies |
6.8. | Thermal Management - Pack and Module Overview |
6.9. | TIM Application - Pack and Modules |
6.10. | TIM Application - Cell Format |
6.11. | Dow Battery Pack Materials |
6.12. | Henkel Battery Pack Materials |
6.13. | DuPont Battery Pack Materials |
6.14. | Key Properties for TIMs in EVs |
6.15. | Gap Pads in EV Batteries |
6.16. | Switching to Gap Fillers from Pads |
6.17. | Material Options and Market Comparison |
6.18. | The Silicone Dilemma for the Automotive Industry |
6.19. | Silicone Alternatives |
6.20. | Main Players and Considerations |
6.21. | Main Players and Recent Announcements |
6.22. | EV Use-case: Audi e-tron |
6.23. | EV Use-case: Chevrolet Bolt |
6.24. | EV Use-case: Fiat 500e |
6.25. | EV Use-case: MG ZS EV |
6.26. | EV Use-case: Nissan Leaf |
6.27. | EV Use-case: Smart Fortwo (Mercedes) |
6.28. | EV Use-case: Tesla Model 3/Y |
6.29. | EV Use-cases: Tesla, Chevrolet, Hyundai |
6.30. | Tesla Eliminating the Battery Module |
6.31. | EV Use-case Summary |
6.32. | Commercial Benchmark for EV Battery TIMs |
6.33. | Battery and TIM Demand Trends |
6.34. | TIM for EV Battery Packs: Forecast by Vehicle Segment |
6.35. | TIM for EV Battery Packs: Forecast by TIM Type |
6.36. | Insulating Cell-to-Cell Foams |
6.37. | Heat Spreaders or Interspersed Cooling Plates |
6.38. | Summary and Conclusions for TIMs in EV |
7. | TIM FOR DATA CENTERS |
7.1. | Thermal Interface Materials in Data Centers: Introduction |
7.2. | Introduction to Data Center Equipment: Servers, Switches and Supervisors |
7.3. | How TIMs Are Used in Servers |
7.4. | Server Board Layout |
7.5. | Intel vs AMD for Server Components |
7.6. | Estimating the TIM Area in Servers |
7.7. | Determining the Relative Numbers of Data Center Equipment |
7.8. | How TIMs are Used in Data Center Switches |
7.9. | Data Center Switch Players |
7.10. | Average Switch Port Numbers |
7.11. | How TIMs are Used in Data Center Supervisor Modules |
7.12. | Estimating the Number of Supervisor Modules in Data Centers |
7.13. | Estimating the TIM Area in Data Center Switches and Supervisors |
7.14. | How TIMs are Used in Data Center Power Supplies |
7.15. | TIM Consumption in Data Center Power Supplies |
7.16. | TIM Trends in Data Centers |
7.17. | Data Center Server Unit Forecast |
7.18. | Switch and Supervisor Modules Forecast |
7.19. | Server, Switch, Supervisor and Power Supply Forecast |
7.20. | TIM Forecast for Data Centers |
8. | TIM IN LEDS |
8.1. | TIM in LEDs for General Lighting |
8.2. | TIM in LEDs for Automotive |
8.3. | TIM in LED for Displays |
8.4. | Total TIM Demand for LEDs |
8.5. | Total LED TIM Forecasts |
9. | TIM IN 4G BASE STATIONS |
9.1. | The Anatomy of a Base Station |
9.2. | Baseband Processing Unit and Remote Radio Head |
9.3. | Path Evolution from Baseband Unit to Antenna |
9.4. | The 6 Components of a Baseband Processing Unit |
9.5. | BBU Part I: TIM Area in the Main Control Board |
9.6. | BBU Parts II & III: TIM Area in the Baseband Processing Board & the Transmission Extension Board |
9.7. | BBU Parts IV & V: TIM Area in Radio Interface Board & Satellite-card Board |
9.8. | BBU Part VI: TIM Area in the Power Supply Board |
9.9. | Remote Radio Head (RRH) Unit Components |
9.10. | RRH Parts: TIM Area in the Main Board |
9.11. | RRU Parts: TIM Area in PA Board |
9.12. | BBU and RRH TIM Summary |
9.13. | BBU TIM Forecasts in 4G/LTE Base Stations |
9.14. | RRH TIM Forecast in 4G/LTE Base Stations |
9.15. | Total TIM Area Forecast for 4G/LTE Base Stations |
10. | TIM IN 5G BASE STATIONS |
10.1. | Next Generation Cellular Communications Network |
10.2. | Evolution of Mobile Communications |
10.3. | What Can 5G offer? High Speed, Massive Connection and Low Latency |
10.4. | Differences Between 4G and 5G |
10.5. | 5G Enables Various Vertical Applications |
10.6. | Two Types of 5G: Sub-6 GHz and High Frequency |
10.7. | Sub-6 GHz Will be the First Option for Most Operators |
10.8. | 5G is Live Globally |
10.9. | Key Players in 5G Technologies |
10.10. | Global Trends and New Opportunities in 5G |
10.11. | Thermal Management for 5G |
10.12. | 5G Base Station Types |
10.13. | 5G Station Instalment Forecast (2020-2031) by Station Size (Macro, Micro, Pico & Femto) |
10.14. | Massive MIMO Requires Active Antennas |
10.15. | Density of Components in RFFE |
10.16. | Main Suppliers of 5G Active Antenna Units (AAU) |
10.17. | Case Study: NEC 5G Radio Unit |
10.18. | Case Study: Nokia AirScale mMIMO Adaptive Antenna |
10.19. | Case study: Samsung 5G Access Solution for SK Telecom |
10.20. | TIM Example: Samsung 5G Access Point |
10.21. | TIM Example: Samsung Outdoor CPE Unit |
10.22. | TIM Example: Samsung Indoor CPE Unit |
10.23. | TIM Forecast for 5G Antenna |
10.24. | TIM for 5G BBU |
10.25. | Power Consumption in 5G |
10.26. | TIM Forecast for Power Supplies |
10.27. | TIM Properties and Players for 5G Infrastructure |
10.28. | TIM Suppliers Targeting 5G Applications |
10.29. | Total TIM Forecast for 5G Stations |
11. | TIM IN CONSUMER ELECTRONICS |
11.1. | TIM in Smartphones |
11.1.1. | Overview of Thermal Management Materials Application Areas |
11.1.2. | Use-case: Samsung Galaxy 3 |
11.1.3. | Use-case: Apple iPhone 5 |
11.1.4. | Use-case: Samsung Galaxy S6 |
11.1.5. | Use-case: Samsung Galaxy S7 |
11.1.6. | Use-case: Samsung Galaxy S6 and S7 TIM Area Estimates |
11.1.7. | Use-case: Apple iPhone 7 |
11.1.8. | Use-case: Apple iPhone X |
11.1.9. | Use-case: Samsung Galaxy S9 |
11.1.10. | Galaxy Note 9 Carbon Water Cooling System |
11.1.11. | Use-case: Oppo R17 |
11.1.12. | Use-case: Samsung Galaxy S10 and S10e |
11.1.13. | Use-case: LG v50 ThinQ 5G |
11.1.14. | Use-case: Samsung Galaxy S10 5G |
11.1.15. | Use-case: Samsung Galaxy Note 10+ 5G |
11.1.16. | Use-case: LG v60 ThinQ 5G |
11.1.17. | Use-case: Nubia Red Magic 5G |
11.1.18. | Use-case: Samsung Galaxy S20 5G |
11.1.19. | Use-case: Samsung Galaxy S21 5G |
11.1.20. | Use-case: Samsung Galaxy Note 20 Ultra 5G |
11.1.21. | Use-case: Huawei Mate 20 X 5G |
11.1.22. | Use-case: Sony Xperia Pro |
11.1.23. | Smartphone Thermal Material Estimate Summary |
11.1.24. | Trends in Smartphone Thermal Material Utilization |
11.1.25. | Graphitic Heat Spreaders |
11.1.26. | Emerging Advanced Material Solutions |
11.1.27. | Insulation Material |
11.2. | TIM in Laptops |
11.2.1. | Use-case: ASUS VivoBook K570 |
11.2.2. | Use-case: Clevo P641RE |
11.2.3. | Use-case: Lenovo ThinkPad X1 Carbon |
11.2.4. | Use-case: Dell XPS 13 |
11.2.5. | Use-case: MacBook Pro 2019 |
11.2.6. | Use-case: MacBook Pro (2020) |
11.2.7. | Use-case: MacBook Air (2020) |
11.2.8. | Laptop Thermal Material Estimate Summary |
11.3. | TIM in Tablets |
11.3.1. | Use-case: iPad Pro 2020 |
11.3.2. | Use-case: iPad Air 2020 |
11.3.3. | Use-case: Amazon Kindle Fire 7 |
11.3.4. | Use-case: Microsoft Surface Go 2 |
11.3.5. | Use-case: Samsung Galaxy Tab A7 |
11.3.6. | Tablet Thermal Material Estimate Summary |
11.3.7. | Consumer Electronics Sales Forecast |
11.3.8. | Thermal Material Forecast for Consumer Electronics |
12. | TIM FORECAST TOTALS |
12.1. | TIM Forecast Totals: Area |
12.2. | TIM Forecast Totals: Tonnage |
12.3. | TIM: Price Analysis |
13. | SUMMARY OF FORECASTS |
13.1. | Summary of Forecasts |
13.2. | EV Battery Demand Forecast |
13.3. | TIM for EV Battery Packs: Forecast by Vehicle Segment |
13.4. | TIM for EV Battery Packs: Forecast by TIM Type |
13.5. | Data Center Server, Switch, Supervisor and Power Supply Forecast |
13.6. | TIM Forecast for Data Centers |
13.7. | Total LED TIM Forecasts: Area |
13.8. | Total LED TIM Forecasts: Tonnage |
13.9. | Total TIM Area Forecast for 4G/LTE Base Stations |
13.10. | 5G Station Instalment Forecast by Station Size (Macro, Micro, Pico & Femto) |
13.11. | TIM Forecast for 5G Antenna |
13.12. | TIM for 5G BBU |
13.13. | TIM Forecast for Power Supplies |
13.14. | Total TIM Forecast for 5G Stations |
13.15. | Consumer Electronics Sales Forecast |
13.16. | Thermal Material Forecast for Consumer Electronics |
13.17. | TIM Forecast Totals: Area |
13.18. | TIM Forecast Totals: Tonnage |