1. | EXECUTIVE SUMMARY |
1.1. | 5G, next generation cellular communications network |
1.2. | Evolution of the cellular base station: overview |
1.3. | 5G station installation forecast (2020-2030) by frequency |
1.4. | 5G station instalment number forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
1.5. | MIMO size forecast (2020-2030) |
1.6. | Antenna elements forecast |
1.7. | Antenna PCB material forecast |
1.8. | GaN to win in sub-6 GHz 5G |
1.9. | Semiconductor choice forecast |
1.10. | Semiconductor forecast (2020-2030) for power amplifiers (GaN, LDMOS, SiGe/Si) by die area |
1.11. | Why metal sintering? |
1.12. | Die attach forecasts |
1.13. | Power forecast for 5G |
1.14. | Total TIM forecast for 5G stations |
1.15. | Smartphone thermal interface material (TIM) estimate summary |
1.16. | Heat spreader material forecast in smartphones by area (excl. display) |
2. | INTRODUCTION |
2.1. | 5G, next generation cellular communications network |
2.2. | Evolution of mobile communications |
2.3. | What can 5G offer? High speed, massive connection and low latency |
2.4. | Differences between 4G and 5G |
2.5. | 5G is suitable for vertical applications |
2.6. | 5G for consumers overview |
2.7. | Two types of 5G: sub-6 GHz and high frequency |
2.8. | Sub-6 GHz will be the first option for most operators |
2.9. | Why does 5G have lower latency radio transmissions? |
2.10. | The main technique innovations |
2.11. | 5G is live globally |
2.12. | 5G Capex 2020-2025 |
2.13. | 5G user equipment landscape |
2.14. | 5G smartphone overview |
2.15. | 5G investments at three stages |
2.16. | Case study: expected 5G investment for infrastructure in China |
2.17. | Key players in 5G technologies |
2.18. | 5G patents by countries |
2.19. | 5G patents by companies |
2.20. | Global trends and new opportunities in 5G |
2.21. | Thermal Management for 5G |
3. | BASE STATION ARCHITECTURE |
3.1. | Shift to higher frequencies shrinks the antenna |
3.2. | 5G station installation forecast (2020-2030) by frequency |
3.3. | 5G base station types |
3.4. | Base station architecture: C-RAN |
3.5. | Evolution of the cellular base station: overview |
3.6. | 5G trend: small cells (picocell and femtocell) |
3.7. | 5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
3.8. | LTE antenna tear down |
4. | ANTENNA DESIGN |
4.1.1. | Massive MIMO requires active antennas |
4.1.2. | MIMO size forecast (2020-2030) |
4.1.3. | Approach to beam forming (hybrid vs analogue vs digital) |
4.1.4. | Approach to beam forming |
4.1.5. | Radio Frequency Front End (RFFE) Module |
4.1.6. | Density of components in RFFE |
4.1.7. | RF module design architecture |
4.1.8. | Some examples from satellite and phased-array radar |
4.1.9. | The same RF IC is being adopted for 5G |
4.1.10. | IDT (Renesas) 28 GHz 2x2 4-channel SiGe beamforming IC |
4.1.11. | NXP: 4-channel Tx/Rx beamforming IC in SiGe with low EVM |
4.1.12. | Anokiwave: Tx/Rx 4-element 3GPP 5G band all in silicon |
4.1.13. | Anokiwave: 256-element all-silicon array |
4.1.14. | Sivers IMA: dual-quad 5G dual-polarized beam forming IC |
4.1.15. | Analog: a 16-channel dual polarized beam-forming IC? |
4.1.16. | SoC Microwave: single-channel GaAs HEMT devices |
4.1.17. | 28 GHz all-silicon 64 dual polarized antenna |
4.1.18. | Planar vs non-planar design |
4.1.19. | Non-planar design |
4.1.20. | Planar design |
4.1.21. | Advanced packaging techniques |
4.1.22. | NEC's new antenna technology |
4.2. | 5G Use Cases and Forecast |
4.2.1. | Sub-6 GHz antenna teardown |
4.2.2. | mmWave antenna teardown |
4.2.3. | Sub-6 GHz and mmWave in one unit |
4.2.4. | Main suppliers of 5G active antennas unit (AAU) |
4.2.5. | Case study: NEC 5G Radio Unit |
4.2.6. | Case study: Nokia AirScale mMIMO Adaptive Antenna |
4.2.7. | Case study: Samsung 5G Access solution for SK telecom |
4.2.8. | Antenna elements forecast |
4.2.9. | Antenna PCB material forecast |
4.2.10. | Power amplifier and beamforming component forecast |
4.2.11. | Thermal considerations for cell towers and base stations |
4.2.12. | Thermal considerations for small cells |
4.2.13. | Nokia's base station liquid cooling |
4.2.14. | ZTE's award winning base station design |
4.2.15. | Antenna array design is just one consideration |
5. | THE CHOICE OF SEMICONDUCTOR TECHNOLOGY FOR 5G |
5.1.1. | Motivation of 5G: increasing the bandwidth |
5.1.2. | The choice of the semiconductor technology |
5.1.3. | Key semiconductor properties |
5.1.4. | Key semiconductor technology benchmarking |
5.1.5. | The choice of the semiconductor technology |
5.1.6. | Power vs frequency map of power amplifier technologies |
5.1.7. | GaAs vs GaN for RF power amplifiers |
5.1.8. | GaAs vs GaN: power density and footprint |
5.1.9. | GaAs vs GaN: reliability and dislocation density |
5.1.10. | So what is the main drawback of GaN? |
5.1.11. | Why GaN and GaAs both have their place? |
5.2. | The GaN Market for RF in 5G |
5.2.1. | GaN-on-Si, SiC or Diamond for RF |
5.2.2. | GaN suppliers |
5.2.3. | Ampleon |
5.2.4. | Analog Devices |
5.2.5. | Cree-Wolfspeed |
5.2.6. | Wolfspeed GaN-on-SiC adoption |
5.2.7. | Infineon |
5.2.8. | MACOM |
5.2.9. | Mitsubishi Electric |
5.2.10. | Northrop Grumman |
5.2.11. | NXP Semiconductor |
5.2.12. | Qorvo |
5.2.13. | Qorvo sub-6 GHz products |
5.2.14. | Qorvo mmWave products |
5.2.15. | Qorvo and Gapwaves mmWave antenna |
5.2.16. | Qorvo 39 GHz antenna |
5.2.17. | RFHIC |
5.2.18. | Sumitomo Electric |
5.2.19. | Summary of RF GaN Suppliers |
5.2.20. | Summary of RF GaN market for 5G |
5.3. | GaN to dominate Sub-6 GHz? |
5.3.1. | LDMOS dominates but will struggle to reach even sub-6 GHz 5G |
5.3.2. | GaN to win in sub-6 GHz 5G |
5.4. | A Different Story for mmWave |
5.4.1. | The situation at mmWave 5G is drastically different |
5.4.2. | Solving the power challenge: high antenna gain increases distance |
5.4.3. | Shift to higher frequencies shrinks the antenna |
5.4.4. | Major technological change: from broadcast to directional communication |
5.4.5. | Examples of MMIC RFFEs for 5G: Qorvo GaN FEM |
5.4.6. | Examples of silicon based beam forming ICs for mmWave 5G |
5.4.7. | Examples of SiGe based beam forming ICs for mmWave 5G |
5.5. | Semiconductor Outlook for 5G |
5.5.1. | Semiconductor choice forecast |
5.5.2. | Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area |
6. | CURRENT AND FUTURE DIE ATTACHMENT: THE ROLE OF METAL SINTERING OR FILLED EPOXY |
6.1.1. | Air cavity vs plastic overmold packages |
6.1.2. | Packaging LDMOS power amplifiers |
6.1.3. | Packaging GaN power amplifiers |
6.1.4. | Packaging GaAs power amplifiers |
6.1.5. | Benchmarking CTE and thermal conductivity of various packaging materials |
6.1.6. | LTCC and HTCC packages |
6.1.7. | HTCC metal-ceramic package |
6.1.8. | LTCC RF transitions in packages |
6.1.9. | Built-in Cu slugs in GaN packages |
6.1.10. | Current die attach technology choice for RF GaN PAs |
6.1.11. | Emerging die attach technology choice for RF GaN PAs |
6.1.12. | Metal sintering vs soldering |
6.1.13. | Why metal sintering? |
6.1.14. | Properties of Ag sintered or epoxy die attach materials |
6.2. | Suppliers of Sintering Pastes |
6.2.1. | Suppliers for metal sintering pastes |
6.2.2. | Suppliers for metal sintering pastes: Alpha Assembly |
6.2.3. | Suppliers for metal sintering pastes: Henkel |
6.2.4. | Henkel: Ag sintering paste |
6.2.5. | Heraeus: sintered Ag die attach paste |
6.2.6. | Suppliers for metal sintering pastes: Heraeus |
6.2.7. | Kyocera: mixed nano/micro pressure-less sintering die attach paste |
6.2.8. | Suppliers for metal sintering pastes: Dowa |
6.2.9. | Namics: a variety of Ag die attach paste |
6.2.10. | Indium Corp: nano Ag pressureless sinter paste |
6.2.11. | Suppliers for metal sintering pastes: Amo Green |
6.2.12. | Toyo Chem: Sintered die attach paste |
6.2.13. | Bando Chemical: pressure-less nano Ag sintering paste |
6.2.14. | Suppliers for metal sintering pastes: Nihon Handa |
6.2.15. | Nihon Superior: nano silver for sintering |
6.2.16. | Heraeus and Nihon Handa cross license |
6.2.17. | Hitachi: Cu sintering paste |
6.2.18. | Cu sintering: characteristics |
6.2.19. | Reliability of Cu sintered joints |
6.2.20. | Mitsui Mining: Nano copper pressured and pressure-less sintering under N2 environment |
6.2.21. | Pricing information on Ag Sintering, solder and TLPB |
6.2.22. | Automating the die attach for 5G power amplifiers |
6.2.23. | Palomar Technologies automated sintering |
6.2.24. | ASM AMICRA Microtechnologies |
6.2.25. | BE Semiconductor |
6.2.26. | Legacy and incumbency for device assembly |
6.3. | Forecast of Die Attach Materials |
6.3.1. | Die attach material forecasts by station size |
6.3.2. | Die attach mass for GaN and LDMOS forecast |
6.3.3. | Sintering market value forecast |
7. | IN-PACKAGE HEAT DISSIPATION |
7.1. | Thermal conductivity of key materials in a package |
7.2. | 2D and 3D package architectures |
7.3. | 2D packages: impact of system architecture on heat dissipation |
7.4. | 3D package: using Ag paste to dissipate heat from the top |
7.5. | Silver paste based heat dissipation 'chimneys' within packages |
7.6. | Silver paste based heat dissipation 'chimneys' within packages |
7.7. | Creating thermal pathways using conductive inks |
8. | THERMAL INTERFACE MATERIALS |
8.1. | TIM Form and Material Overview |
8.1.1. | TIM considerations |
8.1.2. | Thermal interface material by physical form |
8.1.3. | Assessment and considerations of liquid products |
8.1.4. | Ten types of thermal interface material |
8.1.5. | Properties of thermal interface materials |
8.1.6. | 1. Pressure-sensitive adhesive tapes |
8.1.7. | 2. Thermal liquid adhesives |
8.1.8. | 3. Thermal greases |
8.1.9. | Problems with thermal greases |
8.1.10. | Thermal greases |
8.1.11. | Viscosity of thermal greases |
8.1.12. | Technical data on thermal greases |
8.1.13. | The effect of filler, matrix and loading on thermal conductivity |
8.1.14. | 4. Thermal gels |
8.1.15. | 5. Thermal pastes |
8.1.16. | Technical data on gels and pastes |
8.1.17. | 6. Elastomeric pads |
8.1.18. | Advantages and disadvantages of elastomeric pads |
8.1.19. | 7. Phase Change Materials (PCMs) |
8.1.20. | Phase change materials - overview |
8.1.21. | Operating temperature range of commercially available phase change materials |
8.2. | Advanced Materials as Thermal Interface Materials |
8.2.1. | Advanced materials for TIM - introduction |
8.2.2. | Achieving through-plane alignment |
8.2.3. | Summary of TIM utilising advanced carbon materials |
8.3. | Graphite |
8.3.1. | Graphite - overview |
8.3.2. | Graphite sheets: through-plane limitations |
8.3.3. | Graphite sheets: interfacing with heat source and disrupting alignment |
8.3.4. | Panasonic - Pyrolytic Graphite Sheet (PGS) |
8.3.5. | Progressions in vertical graphite |
8.3.6. | Vertical graphite with additives |
8.3.7. | Graphite pastes |
8.4. | Carbon Fiber |
8.4.1. | Carbon fiber as a thermal interface material - introduction |
8.4.2. | Carbon fiber as TIM in smartphones |
8.4.3. | Magnetic alignment of carbon fiber TIM |
8.4.4. | Other routes to CF alignment in a TIM |
8.4.5. | Carbon fiber with other conductive additives |
8.5. | Carbon Nanotubes (CNT) |
8.5.1. | Introduction to Carbon Nanotubes (CNT) |
8.5.2. | Challenges with VACNT as TIM |
8.5.3. | Transferring VACNT arrays |
8.5.4. | Notable CNT TIM examples from commercial players |
8.6. | Graphene |
8.6.1. | Graphene in thermal management: application roadmap |
8.6.2. | Graphene heat spreaders: commercial success |
8.6.3. | Graphene heat spreaders: performance |
8.6.4. | Graphene heat spreaders: suppliers multiply |
8.6.5. | Graphene as a thermal paste additive |
8.6.6. | Graphene as additives to thermal interface pads |
8.7. | Ceramic Advancements |
8.7.1. | Ceramic trends: spherical variants |
8.7.2. | Denka: functional fine particles for thermal management |
8.7.3. | Denka |
8.7.4. | Showa Denko: transition from flake to spherical type filler |
8.8. | Boron Nitride Nanostructures |
8.8.1. | Introduction to nano boron nitride |
8.8.2. | BNNT players and prices |
8.8.3. | BNNT property variation |
8.8.4. | BN nanostructures in thermal interface materials |
8.9. | TIM in 5G Antenna and BBU |
8.9.1. | Board-level heat dissipation: thermal interface materials |
8.9.2. | Indium foils as a good board-level TIM option |
8.9.3. | A simple description to the anatomy of a base station |
8.9.4. | Background info on baseband processing unit and remote radio head |
8.9.5. | Path evolution from baseband unit to antenna |
8.9.6. | TIM example: Samsung 5G access point |
8.9.7. | TIM example: Samsung outdoor CPE unit |
8.9.8. | TIM example: Samsung indoor CPE unit |
8.9.9. | TIM forecast for 5G antenna |
8.9.10. | The 6 components of a baseband processing unit |
8.9.11. | BBU parts I: TIM area in the main control board |
8.9.12. | BBU parts II & III: TIM area in the baseband processing board & the transmission extension board |
8.9.13. | BBU parts IV & V: TIM area in radio interface board & satellite-card board |
8.9.14. | BBU parts VI: TIM area in the power supply board |
8.9.15. | Summary |
8.9.16. | TIM for 5G BBU |
8.10. | 5G Power |
8.10.1. | Power consumption in 5G |
8.10.2. | Challenges to the 5G power supply industry |
8.10.3. | The dawn of smart power? |
8.10.4. | Power consumption forecast for 5G |
8.10.5. | TIM forecast for power supplies |
8.11. | Total TIM Forecast for 5G |
8.11.1. | Total TIM forecast for 5G stations |
9. | THERMAL STRATEGIES FOR ACCESS POINTS |
9.1. | Access points |
9.2. | Components affected by temperature |
9.3. | Boyd's take on thermal design for an access point |
9.4. | Cradlepoint's wideband adapter |
9.5. | Huawei 5G CPE unit |
9.6. | ZTE 5G Wi-Fi router |
9.7. | Developments for access points |
10. | THERMAL MANAGEMENT FOR MOBILE DEVICES |
10.1.1. | 5G phones overheating |
10.1.2. | 5G smartphone chipsets: which OEMs have mmWave |
10.1.3. | mmWave costs more too |
10.1.4. | Qualcomm's 5G antenna |
10.1.5. | Apple's 5G delay and Intel withdraw from market |
10.2. | Thermal Management Approaches for 5G Mobile Devices |
10.2.1. | Thermal throttling |
10.2.2. | Materials selection |
10.2.3. | Heat dissipation |
10.2.4. | Heat sinks and heat spreaders |
10.2.5. | Heat pipes/ vapour chambers |
10.2.6. | Vapour chambers: OEMs |
10.2.7. | Emerging role of vapour chambers |
10.2.8. | OEM thermal management strategies |
10.2.9. | Samsung's cooling solution |
10.2.10. | Huawei |
10.2.11. | Nubia Red Magic 5G gaming phone |
10.2.12. | Lenovo demonstrate the first 5G laptop |
10.2.13. | Thermoelectric Cooling (TEC) |
10.2.14. | Smartphone cooling now and in the future |
10.3. | Thermal Materials for Mobile Devices |
10.3.1. | Introduction |
10.3.2. | Thermal management differences: 4G vs 5G smartphones |
10.3.3. | Example images of thermal management materials |
10.3.4. | Galaxy 3: teardown and how TIM is used |
10.3.5. | Galaxy S6: teardown and how TIM is used |
10.3.6. | Galaxy S7: teardown and how TIM is used |
10.3.7. | Galaxy S7: teardown and how TIM is used |
10.3.8. | Galaxy S9: teardown and how TIM is used |
10.3.9. | Galaxy S9: teardown and how TIM is used |
10.3.10. | Galaxy note 9 carbon water cooling system |
10.3.11. | Samsung S10 and S10e: teardown and how TIM is used |
10.3.12. | Galaxy S6 and S7 TIM area estimates |
10.3.13. | Oppo R17: teardown and how TIM is used |
10.3.14. | Huawei Mate Pro 30: teardown and how TIM is used |
10.3.15. | Huawei Mate Pro 20: teardown and how TIM is used |
10.3.16. | iPhone 4: teardown and how TIM is used |
10.3.17. | iPhone 5: teardown and how TIM is used |
10.3.18. | iPhone 7: teardown and how TIM is used |
10.3.19. | iPhone X: teardown and how TIM is used |
10.3.20. | LG v50 ThinQ 5G |
10.3.21. | LG v60 ThinQ 5G |
10.3.22. | RedMagic 5G |
10.3.23. | Samsung Galaxy S10 5G |
10.3.24. | Samsung Galaxy S20 5G |
10.3.25. | Samsung Galaxy Note 10+ 5G |
10.3.26. | Smartphone thermal material estimate summary |
10.3.27. | Heat spreader material forecast in smartphones by area (excl. display) |
11. | SUMMARY OF REPORT FORECASTS |
11.1. | 5G station installation forecast (2020-2030) by frequency |
11.2. | 5G station instalment forecast (2020-2030) by type of cell (macro, micro, pico/femto) |
11.3. | MIMO size forecast (2020-2030) |
11.4. | Antenna elements forecast |
11.5. | Antenna PCB material forecast |
11.6. | Power amplifier and beamforming component forecast |
11.7. | Semiconductor forecast (2020-2030) for amplifiers (GaN, LDMOS, SiGe/Si) by die area |
11.8. | Die attach material forecasts by station size |
11.9. | Die attach mass for GaN and LDMOS forecast |
11.10. | Sintering market value forecast |
11.11. | TIM forecast for 5G antenna |
11.12. | TIM for 5G BBU |
11.13. | Power consumption forecast for 5G |
11.14. | TIM forecast for power supplies |
11.15. | Total TIM forecast for 5G stations |
11.16. | Heat spreader material forecast in smartphones by area (excl. display) |