此报告介绍了 3D 生物打印使用的技术以及 3D 生物打印组织的主要应用,重点讲述了再生医学的未来应用。此报告探讨了 3D 生物打印技术的优势、当前的驱动因素、趋势和挑战。3D 生物打印预计将在 2028 年之前达到 19 亿美元的市场规模。
Interest in 3D bioprinting has been gaining momentum in recent years, both in the academic and commercial settings. Between 2014 and 2015, the market welcomed numerous 3D bioprinting companies, and new start-ups, spin-outs, and subsidiaries are continuing to emerge. Though investment in the field has been driven on by the futuristic goal of providing solutions for regenerative by way of fabricating organs for transplant, more realistic applications in product development and testing have shown great promise and are already being marketed. Over 2016, several 3D bioprinting companies saw a doubling of revenue, and comparable results are anticipated for the next few years. Given these market trends, IDTechEx forecasts that the global market for 3D bioprinting will reach a value of $1.9 billion by the year 2028.
Technology and Applications
3D bioprinting can be defined in a variety of ways, and each definition includes and excludes large swathes of key biotechnology markets. In this report, IDTechEx has defined 3D bioprinting as the deposition of living cells in a spatially controlled manner in the absence of any pre-existing scaffold and in more than a single layer. Under this definition, 3D bioprinters are currently based on four main printhead technologies:
- Inkjet
- Extrusion
- Laser-induced forward transfer
- Microvalve
This report profiles each technology and its subtypes, and provides key specifications, vendors, and SWOT analyses. This report also introduces and discusses 3D bioprinting technologies of microfluidic chip, microneedle array, 2-photon polymerization, and cell electrospinning amongst others. Technologies and considerations relevant to the 3D bioprinting process, such as software, bioink (including cell selection, growth factors, and scaffold materials), and post-printing maturation are also discussed.
Current and future applications for 3D bioprinting discussed in this report include:
- Testing of cosmetics and other consumer goods
- Drug screening
- Personalised medicine
- Regenerative medicine
- Cell-based biosensors
- Food and other animal products
- Education
- Academic research
- Bionics
Regenerative Medicine
Special attention is paid to regenerative medicine in this report, as not only does it have the potential to be the largest application for 3D bioprinting in the future, but also one with the highest impact. This report analyses how 3D bioprinting can be applied to regenerative medicine, and focuses on the following tissue types:
- Bone and cartilage
- Skin
- Dental
- Vasculature
- Complex organs
Additionally, discussion of current progress in bringing 3D bioprinted tissues to the clinic is provided, as well future hurdles to be faced. A roadmap of 3D bioprinting in regenerative medicine to the year 2050 is provided.
Forecasts
This report forecasts the overall 3D bioprinting market to 2028, with in depth discussion of key trends in the short term (2018 - 2022), and those expected in the long term (2023 - 2028). Market forecasts to 2028 are also provided for the 3D bioprinter market segmented by price point, and the 3D bioprinted tissue market segmented by tissue application.
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。