Energy Storage Report

在氧化还原液流电池市场中,钒液流电池占据主导地位,超过市场总份额的 50%

氧化还原液流电池 2020-2030:预测、挑战、机遇

钒、有机和地球富含元素液流电池,从住宅到电网规模应用的技术和市场分析。


显示全部说明内容、图表列表价格 Related Content
不断增长的液流电池市场目前正向公用事业行业扩展,而钒技术则占据了总体市场的 95%。报告将提供针对液流电池技术的全面深入分析,同时阐释当前市场的概况,并就未来机遇进行探讨。OEM 厂家、化工企业和投资人可从中了解氧化还原液流电池行业的当前技术发展情况、市场规模和未来机遇。
The modernization and decarbonization of the electricity grid are setting a big challenge for the electric grid operators. To integrate and update the electricity grid, energy storage devices are one of the main solutions adopted, allowing the storage of the excess electricity produced by renewable energy sources, besides providing ancillary services, and stabilising the grid.
 
Within the different energy storage technologies, the electrochemical devices are one of the most common choices because of their location flexibility, efficiency, and scalability. From different electrochemical devices available, the Redox flow batteries (RFBs) are one of the most chosen solutions for medium and large-scale applications. The fast time response (in the range of milli seconds), a long cycle life (more than 20,000 cycles), and their easily recyclable components, allow the RFBs to steadily increase their adoption on the market.
While the stationary energy storage market is currently dominated by Li-ion batteries, redox flow batteries are slowly being adopted with an increasing number of projects all over the world.
 
The redox flow batteries have been developed for more than 40 years, and available on the market for almost 20 years. The flow battery producers, in particular vanadium redox flow battery (VRFB) manufacturers, have abundantly developed, tested, and demonstrated the technology over the years, reaching an overall installation of roughly 70MW of power and 250 MWh of energy. Flow battery producers keep receiving funding to expand manufacture, improve their products and reduce the technology cost. Moreover, solid collaborations between flow battery manufacturers, OEMs, and chemical and mining companies are taking place all over the world, with the common target to make this technology competitive on the market.
 
 
To better understand the flow battery market and forecast future developments, IDTechEx performed an in-depth analysis of the different types of flow batteries, investigating the historical development of each technology and related flow battery market evolution. Moreover, to understand the technological development, and the adoption of this technology in the next years, several companies were profiled.
 
The results of these studies, presented in this report, revealed a market dominated by one of the oldest technologies, the vanadium redox flow battery (VRFB), which accounts for more than 50% of the available companies commercialising flow batteries. Besides the VRFB, other flow battery manufacturers are developing flow batteries based on different electrolytes, like the Organic flow battery (ORFB), and All-iron (Fe-RFB), Hydrogen/Bromine or Zinc/Bromine flow batteries (ZBB). In the report a summary of the main properties of each electrolyte are presented.
 
The reader will understand the possibilities and the challenges of each type of electrolyte, explained in a simple and concise way. It will allow to evaluate himself/herself the characteristics of each technology, and related chances to conquer its share of the market.
 
Besides the investigation of different electrolytes, an analysis of the battery electrode stack, one of the core parts of this technology, is provided. The different components of the electrode stack are explained, together with investigating the different possible materials employed. This would allow investors, OEMs and chemical companies, to understand the different materials involved, and where further improvements will be required.
 
Besides the technical prospective of the technology, IDTechEx investigated why, and how, different countries are involved in the adoption of RFBs. Therefore, Chapter 5 provides an overview of different countries, covering Europe, US, Africa, and China, where it is explained how these countries are approaching the flow battery technology.
 
From these wide and in-depth techno-economic analysis, IDTechEx aims to facilitate investors, OEMs and chemical industries to understand the current redox flow battery market, and its future development between 2020-2030.
从 IDTechEx 访问分析师
所有报告购买订单均包括与一名专家分析师进行 30 分钟的电话交谈,专家分析师将帮助您将报告中的重要发现与您正在处理的业务问题联系起来。这需要在购买报告后的三个月内使用。
更多信息
如果您对这一报告有任何疑问,请随时联系我们的报告团队 research@IDTechEx.com 或致电我们的销售经理:

AMERICAS (USA): +1 617 577 7890
ASIA (Japan): +81 3 3216 7209
EUROPE (UK) +44 1223 812300
Table of Contents
1.EXECUTIVE SUMMARY
1.1.The slow market of Redox Flow Batteries
1.2.Market forecast: Market Insight
1.3.Market forecast: Considerations
1.4.IDTechEx Flow Battery Forecast
1.5.Market forecast: Assumptions
1.6.Market forecast: Market Share
1.7.Companies in this Report
1.8.Market Analysis: Redox flow battery Market Overview
1.9.Market Analysis: TRL and MRL explanation
1.10.Market Analysis: Flow Battery on the Market
1.11.Market Analysis: Companies TRL, MRL Evaluation
1.12.Market Analysis: Technology Market Share
1.13.Market Analysis: Company Market Share
1.14.Market Analysis: Companies Power/Energy Product Comparison
1.15.Market Analysis: Energy Densities Comparison for Residential Sector
1.16.Redox flow batteries in the news
1.17.From the News: BASF interests in Flow Batteries
1.18.From the News: ViZn... back on the scene!
1.19.From the News: CellCube Part 1 - 100 MWh in USA
1.20.From the News: CellCube Part 2 - 120 MWh in UK
1.21.From the News: CellCube Part 3 - "Enerox for Sale"
1.22.From the News: Schmid Group from China to Saudi Arabia.
1.23.From the News: Shell: from Vanadium (RFB) to LIB
1.24.From the News: Voltstorage on the News
1.25.From the News: Bushveld, the company that created its future
2.INTRODUCTION
2.1.Useful charts for performance comparison
2.2.Definitions: What is a battery?
2.3.Definitions: Electrochemistry definitions
2.4.Electrochemistry definitions
2.5.Definitions: Efficiencies
2.6.Definitions: Cross-Mixing, and Shunt current
2.7.Redox Flow Battery: Energy & Power
2.8.Redox Flow Battery: Decoupled power and energy
2.9.Redox Flow Battery: Working Principle
2.10.Redox Flow Battery: Fit-and-forget philosophy
2.11.Redox Flow Battery: RFB views
2.12.What does 1 kilowatt-hour (kWh) look like?
2.13.Finding the right market
2.14.New avenues for stationary storage
2.15.The battery trilemma
2.16.The increasingly important role of stationary storage
2.17.Stationary energy storage is not new
2.18.New avenues for stationary storage
2.19.Values provided at the customer side
2.20.Values provided at the utility side
2.21.Values provided in ancillary services
2.22.Comparison of RFBs and conventional batteries
2.23.Competing technologies: Li-ion
2.24.Competing technologies: Tesla PowerWall
2.25.Competing technologies: LCOS of Li-ion and RFBs
2.26.Competing technologies: Na/S
2.27.The case for RFBs
2.28.The case for RFBs: A Comparison
2.29.The case for RFBs: Stationary Batteries Comparison
2.30.The case for RFBs: RFB Cost
2.31.The case for RFBs: LCOS
2.32.Redox flow batteries and caves
2.33.Redox Flow Batteries for Automotive
2.34.Redox Flow Batteries for Automotive: GE
2.35.Redox Flow Batteries for Automotive: Toyota
2.36.Redox Flow Batteries for Automotive: nanoFlowcell
3.TYPES OF REDOX FLOW BATTERIES
3.1.Definition: Gaseous and liquid electrodes
3.2.Definition: Catholytes and anolytes
3.3.Choice of redox-active species and solvents
3.4.Redox Flow Battery Classification
3.5.History of RFB
3.6.RFB chemistries: Iron/Chromium
3.7.RFB chemistries: Polsulfides/Bromine flow batteries (PSB)
3.8.RFB chemistries: Vanadium/Bromine
3.9.RFB chemistries: All Vanadium (VRFB)
3.10.RFB chemistries: Zinc Bromine flow battery (ZBB) - Hybrid
3.11.RFB chemistries: Hydrogen/Bromide - Hybrid
3.12.RFB Chemistries: all Iron - Hybrid
3.13.Other RFBs: Organic Redox Flow Battery
3.14.Other RFBs: non-aqueous
3.15.Other RFBs: Lab-scale flow battery projects
3.16.Other RFBs: Microflow batteries?
3.17.Technology Recap
3.18.Cost factors at electrolyte level
3.19.Hype Curve® for RFB technologies
4.MATERIALS AND COST ANALYSIS
4.1.Materials for Redox Flow Batteries
4.2.Membranes: Overview
4.3.Membranes: Mesoporous Separators
4.4.Membranes: Ionic Exchange Membranes (IEM)
4.5.Membranes: Composite Membranes, and Solid State Conductors
4.6.Bipolar Electrodes
4.7.Bipolar Electrodes: Parasitic Effect
4.8.Bipolar Electrodes: Electrode Materials
4.9.Electrodes: Carbon-based Electrodes
4.10.(Bipolar) Electrodes
4.11.Flow distributors and turbulence promoters
4.12.Electrolyte flow circuit
4.13.Cost breakdown of a Vanadium-redox flow battery
4.14.RFB value chain
4.15.Raw materials for RFB electrolytes
4.16.Vanadium: Overview
4.17.Vanadium: Mining and Products
4.18.Vanadium: Ore Processing
4.19.The Vanadium Industry
4.20.Vanadium: Price Trend
5.CASE STUDIES, REGIONAL ANALYSIS, AND COMPANY PROFILES
5.1.Case Study: Bushveld Energy
5.2.Case Study: RedT / Avalon Battery Merge
5.3.Case Study: Jena Batteries
5.4.Regional Analysis: EU
5.5.Regional Analysis: China
5.6.Regional Analysis: U.S.
5.7.Regional Analysis: Australia
5.8.Regional Analysis: South Africa
5.9.Company Profiles
6.APPENDIX
6.1.References
6.2.Technology and manufacturing readiness
6.3.List of RFB Producers: Categorized Chemistry
 

Ordering Information

氧化还原液流电池 2020-2030:预测、挑战、机遇

£$¥
电子版(1-5 名用户)
£4,450.00
电子版(6-10 名用户)
£6,450.00
电子版及 1 份硬拷贝文件(1-5 名用户)
£4,850.00
电子版及 1 份硬拷贝文件(6-10 名用户)
£6,850.00
电子版(1-5 名用户)
€5,075.00
电子版(6-10 名用户)
€7,250.00
电子版及 1 份硬拷贝文件(1-5 名用户)
€5,500.00
电子版及 1 份硬拷贝文件(6-10 名用户)
€7,750.00
电子版(1-5 名用户)
$5,750.00
电子版(6-10 名用户)
$8,250.00
电子版及 1 份硬拷贝文件(1-5 名用户)
$6,250.00
电子版及 1 份硬拷贝文件(6-10 名用户)
$8,750.00
电子版(1-5 名用户)
¥598,000
电子版(6-10 名用户)
¥868,000
电子版及 1 份硬拷贝文件(1-5 名用户)
¥648,000
电子版及 1 份硬拷贝文件(6-10 名用户)
¥928,000
Click here to enquire about additional licenses.
If you are a reseller/distributor please contact us before ordering.
お問合せ、見積および請求書が必要な方はm.murakoshi@idtechex.com までご連絡ください。

报告统计信息

幻灯片 181
预测 2030
已发表 Mar 2020
 

预览内容

pdf Document Sample pages
 
 
 
 

Subscription Enquiry